• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

integrable system and moduli theory of derived category

Research Project

  • PDF
Project/Area Number 26400043
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Inaba Michiaki  京都大学, 理学研究科, 准教授 (80359934)

Research Collaborator Saito Masa-Hiko  
Abe Takeshi  
Mochizuki Takuro  
Yoshioka Kota  
Komyo Arata  
Project Period (FY) 2014-04-01 – 2019-03-31
Keywordsモジュライ / 不確定接続 / 一般モノドロミー保存変形
Outline of Final Research Achievements

I constructed the moduli space of irreuglar singular connections on algebraic curves. It was difficult to formulate the moduli of ramifeid irregular singular connections, but I succeeded in its formulation and proved that the moduli space of ramified irregular singular connections is smooth with a symplectic structure.
On the other hand, the construction of the unramified irregular singular connections is rather easy and we can construct the generalized isomonodromic deformation based on the Jimbo-Miwa-Ueno theory on the unramified moduli spaces.
I also constructed a deformation of the unramified moduli space to the regular singular moduli spaces and gave a local analytic lift of the generalized isomonodromic deformation.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

不確定特異点の一般モノドロミー保存変形は,神保・三輪・上野の理論によって確立された可積分系で,ソリトン解を導くなど,幅広い分野へのインパクトを与える理論である.一般モノドロミー保存変形の大域的性質を概念的に捉えるためには、代数曲線上の不確定接続のモジュライ空間で定式化すると明快になる.特に分岐不確定の場合は,モジュライ空間の定式化自体が特に一般種数の場合に非自明であったが,本研究において,局所指数がある種のgenericな条件を満たす場合にその定式化と構成に成功した.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi