• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Morse theory and topology of manifolds / groups of diffeomorphisms

Research Project

  • PDF
Project/Area Number 26800041
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

Watanabe Tadayuki  島根大学, 総合理工学研究科, 講師 (70467447)

Research Collaborator SAKAI Keiichi  信州大学, 学術研究院理学系, 准教授 (20466824)
SHIMIZU Tatsuro  京都大学, 数理解析研究所, 特定助教 (00738859)
Project Period (FY) 2014-04-01 – 2018-03-31
KeywordsChern-Simons摂動理論 / Morse理論 / 有限型不変量 / 3次元多様体 / 微分同相群 / 有理ホモトピー群
Outline of Final Research Achievements

We studied a construction of an equivariant perturbative invariant for 3-manifolds with positive first Betti number, and its relation to finite type invariants. We coustructed an equivariant perturbative invariant for 3-manifolds with positive first Betti number by using Fukaya's Morse homotopy theory. We showed that the degree k part in a filtration that defines a finite type invariant is at least the image of the natural map from the space of k-vertex trivalent graphs colored by Laurent polynomials to the space of k-vertex trivalent graphs colored by rational functions.

Free Research Field

位相幾何学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi