1986 Fiscal Year Annual Research Report
Project/Area Number |
61540150
|
Research Institution | Nagoya University |
Principal Investigator |
篠田 寿一 名大, 教養部, 講師 (30022685)
|
Co-Investigator(Kenkyū-buntansha) |
塩田 昌弘 名古屋大学, 教養部, 助教授 (00027385)
三宅 克哉 名古屋大学, 教養部, 教授 (20023632)
安本 雅洋 名古屋大学, 理学部, 助手 (10144114)
小澤 正直 名古屋大学, 教養部, 助教授 (40126313)
柘植 利之 名古屋大学, 教養部, 教授 (70023520)
|
Keywords | 帰納的関数論 / 【Δ(^1-2)】 / β-モデル / 有限の型の対象 / ブール値解析学 / ノンスタンダードモデル / 【C^ω】Nash多様体 |
Research Abstract |
1.第2階の算術体係のモデルとして、従来集合論的立場から考えられていたβ-モデルについて、高階の帰納的関数論の立場からとらえることにより弱い形の内包公理をみたすβ-モデルを特徴づける結果を得た。 (1)【Δ(^1-C)】-内包公理をみたすβ-モデルは、KP集合論から【Δ^C】。-収集公理を除いた体系に直積公理、無限公理およびBetaを付け加えたものの推移モデルの実数部分として特徴づけられる。 (2)【π(^1-1)】内包公理をみたすβ-モデルは、hyperjumpに関して閉じているω-モデルとして特徴づけられる。 (3)【Δ(^1-2)】内包公理をみたす可算なβ-モデルは、【E^1】以上のdegreeをもつ型2の対象の1-sectionとして特徴づけられる。 2.小澤正直はブール値解析学によるA【W^*】一環の理論の翻訳原理を確立し、埋め込み可能A【W^*】一環の特徴づけの問題を解決するとともに、その応用として、traceの加法性の問題を解明した。 3.安本雅洋は、ノンスタンダードアナリシスの手法を算術体系に適用することにより、等差数列と多項式に関するSchinzelの定理と同様の果が等比数列の場合にも成立することを示した。 4.代数的研究グループでは、ヒルベルトの定理および淡中-寺田の単項化定理を統一的な観点からとらえることにより、これらの定理の拡張に成功した。また、素数ΡΞ1(mod4)の新しい不変量を定義し、それらの不変量と類数との間の関係を調べた。 5.幾何学的研究グループにおいては、主として【C^ω】Nash多様体の構造を調べ、【C^ω】Nash多様体上の【C^ω】Nash関数に関する拡張定理を得た。
|
-
[Publications] Jun Makino;Juichi Shinoda: Commentarii Mathematici Universitatis Sancti Pauli. 35. 93-101 (1986)
-
[Publications] Katsuya Miyake Ed.Nagoya Univ.: Preprint series 1986 No.1,Dept.Math Coll.Gen.1. 1-96 (1986)
-
[Publications] Hideo Tokoi Ed.Nagoya Univ.: Preprint series 1987 No.2,Dept.Maht.,Coll.Gen.2. (1987)
-
[Publications] Masahiro Shiota: C.R.Acad.Sc.Paris. 302. 127-129 (1986)
-
[Publications] Masanao Ozawa: J.London Math.Soc.(2). 33. 347-354 (1986)
-
[Publications] Masahiro Yasumoto: Nagoya Mathematical Journal. 105. 33-37 (1987)