Co-Investigator(Kenkyū-buntansha) |
岩田 覚 東京大学, 大学院情報処理工学系研究科, 教授 (00263161)
岡本 吉央 電気通信大学, 大学院情報理工学研究科, 准教授 (00402660)
神山 直之 九州大学, マス・フォア・インダストリ研究所, 准教授 (10548134)
来嶋 秀治 九州大学, 大学院システム情報科学研究院, 准教授 (70452307)
BELMONTE Remy 電気通信大学, 大学院情報理工学研究科, 助教 (80780147)
|
Budget Amount *help |
¥80,080,000 (Direct Cost: ¥61,600,000、Indirect Cost: ¥18,480,000)
Fiscal Year 2016: ¥18,200,000 (Direct Cost: ¥14,000,000、Indirect Cost: ¥4,200,000)
Fiscal Year 2015: ¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2014: ¥18,850,000 (Direct Cost: ¥14,500,000、Indirect Cost: ¥4,350,000)
Fiscal Year 2013: ¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2012: ¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
|
Outline of Final Research Achievements |
In this project, we obtained the following results. 1. On extended formulations that have been extensively studied recently, a compact representation is provided for sparsity matroids that play important roles both in theory and in practice. 2. The first polynomial-time algorithm is developed for the weighted linear matroid parity problem. 3. A novel reduction method (a hardness proof method) is developed among problems for which brute-force searches cannot be essentially surpassed, resulting in a new standard for the field of exponential-time computation. 4. A polynomial time deterministic approximation algorithm is presented to compute the volume of a 0-1 knapsack polytope which is known to be #P-hard.
|