Project/Area Number |
04402001
|
Research Category |
Grant-in-Aid for General Scientific Research (A)
|
Allocation Type | Single-year Grants |
Research Field |
解析学
|
Research Institution | KYOTO UNIVERSITY |
Principal Investigator |
NISHIDA Takaaki Kyoto University Mathematics Professor, 理学部, 教授 (70026110)
|
Co-Investigator(Kenkyū-buntansha) |
KOKUBU H Faculty of Science Lecturer, 理学部, 講師 (50202057)
JIMBO M Faculty of Science Professor, 理学部, 教授 (80109082)
IWASAKI N Faculty of Science Professor, 理学部, 教授 (70027374)
HIRAI T Faculty of Science Professor, 理学部, 教授 (70025310)
WATANABE S Faculty of Science Professor, 理学部, 教授 (90025297)
谷口 雅彦 京都大学, 理学部, 助教授 (50108974)
大鍛冶 隆 (大鍛治 隆司) 京都大学, 理学部, 助教授 (20160426)
西田 吾郎 京都大学, 理学部, 教授 (00027377)
池部 晃生 京都大学, 理学部, 教授 (00025280)
|
Project Period (FY) |
1992 – 1994
|
Project Status |
Completed (Fiscal Year 1994)
|
Budget Amount *help |
¥15,100,000 (Direct Cost: ¥15,100,000)
Fiscal Year 1994: ¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 1993: ¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 1992: ¥8,200,000 (Direct Cost: ¥8,200,000)
|
Keywords | Hyperbolic P.D.E. / Stochastic Diff.Eq. / Fluid dynamical equations / Solvable lattice models / Dynamical System / Bifurcation problems / Structure of solution space / Computer assisted proof / 量子力学の方程式 / 分岐問題 / 計算機支援証明 / ホモクリニック倍分岐 / Schrodinger方程式 / 散乱理論 / 自由表面問題 / 幾何学的Lorenzアトラクター / 量子力学的3体系 / Heisenberg群上の双曲型方程式 / Schrodinger型方程式 / スペクトル理論 |
Research Abstract |
Main theme is the investigation of the structure of the solution and the structure of the solution space for the system of the differential equations in the mathematical science. (1) Investigation for the characterization of the wellposedness of the hyperbolic partial differential equation, specially the effective hyperbolicity for the equation which has triple chracteristic roots. Propagation of singularities along the bicharacteristics (2) Investigations of the solutions of stochastic differential equations, especially the expansion of the Donsker's delta function by the wiener chaos using the Levi-sum method which constructs the heat kernel from the Gauss kernel. Approximation scheme for the heat kernel using the Donsker's delta function (3) Investigation for the structure of the space of states for solvable lattice models. Explicit formula for the correlation function for the six-vertex model using the representation of quantum groups (4) Investigation of bifurcations and chaos in the Dynamical systems. Appearance of the geometric strange attractors by small perturbation of the degenerate vector field which has triple zero characteristic values. Codimension two bifurcations of homoclinic or heteroclinic orbits, specially infinitely many numbers of homoclinic doubling bif. (5) Bifurcation problems for the equations of fluid dynamics. Investigations and proof of the stationary and Hopf bifurcations for the free surface problems using the computer assisted proof
|