• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

n-harmonic maps and conformal structures on manifolds

Research Project

Project/Area Number 10640209
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionYamaguchi University

Principal Investigator

NKAUCHI Nobumitsu  Yamaguchi University, Faculty of Science, associate professor, 理学部, 助教授 (50180237)

Co-Investigator(Kenkyū-buntansha) TAKAKUWA Shoichiro  Tokyo Metropolitan University, Faculty of Science, associate professor, 理学部, 助教授 (10183435)
TAKEUCHI Hiroshi  Shikoku University, Faculty of Management and Information Science, professor, 経営情報学部, 教授 (20197271)
KAWAI Shigeo  Saga University, Faculty of Culture and Education, professor, 文化教育学部, 教授 (30186043)
KATO Shin  Osaka City University, Faculty of Science, associate professor, 理学部, 助教授 (10243354)
KOBAYASHI Osamu  Kanazawa University, Faculty of Science, professor, 理学部, 教授 (10153595)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 1999: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 1998: ¥2,100,000 (Direct Cost: ¥2,100,000)
Keywordsn-harmonic map / p-harmonic map / conformal structure / manifold / variational problem
Research Abstract

With applications to the geometry of conformal structures in mind, we studied p-harmonic maps and n-harmonic maps. From some points of view, we considered the case in which the source or the target is the standard sphere. We obtained a regularity result for p-harmonic maps into the sphere. Though the concept of p-harmonic maps are, speaking formally, a generalization of that of harmonic maps, we are often in the face of different features and some difficulties. We give the following summary of what are main difficulties in the study of p-harmonic maps :
(1) The p-harmonic map equation is ellptic, but degenerate unless p = 2.
(2) In several cases, there exist some nontrivial terms which vanishes only when p = 2
(3) The exponent or the index "2" in the case of harmonic maps (p = 2) has various different meanings for general p, for example, p, 2p - 2, …, which are all equal to 2 when p = 2.
Some cases in the above difficulties can be controled with some tricks. In the Bochner-Weitzenbock formula, for example, we can make nontrival terms in case of p ≠ 2 vanish in a certain integral formula. As for the rest cases in the above difficulties, new techniques are necessary and we have a hope of them in the study in the future.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] Nobumitsu Nakauchi: "On the existence of n-hamonic map"Comp.Math.. 117. 33-43 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shigeo Kawai: "p-hamonic maps; and convex functions"Geom.Dedicata. 74. 261-265 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hircshi Takeuchi: "On the first eigenvalue of p-Laplacian in a Riemannian manifold"Tokyo J.Math.. 21. 135-140 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shoichiro Takakuwa: "A compactness theorem for harmonic maps"Differential Integral Equations. 11. 169-178 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Osamu Kobayashi: "Vertices of curves with complementary shells"Kobe J.Math.. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shin Kato: "General existence of minimal surfaces of genus zero with catenoid ends and prescribed flux"Comm.Anal.Geom.. 8. 83-114 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shigeo Kawai, Nobumitsu Nakauchi & Hiroshi Takeuchi: "On the existence of n-harmonic map"Comp. Math.. 117. 33-43 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shigeo Kawai: "p-harmonic maps and convex functions"Geom. Dedicata. 74. 261-265 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Takeuchi: "On the first eigenvalue of the p-Laplacian in a Riemannian manifold"Tokyo J. Math. 21. 135-140 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shoichiro Takakuwa: "A compactness theorem for harmonic maps"Differential Integral Equations. 11. 169-178 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Osamu Kobayashi: "Vertices of curves with complementary shells"Kobe J. Math. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shin Kato: "General existence of minimal surfaces of genus zero"Comm. Ann. Geom.. 8. 83-114 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Nobumitsu Nakauchi: "On the existence of n-harmonic map"Comp.Math.. 117. 33-43 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Shigeo Kawai: "p-harmonic maps and convex functions"Geom.Dedicata. 74. 261-265 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hiroshi Takeuchi: "On the first eigenvalue of p-Laplacian in a Riemannian manifold"Tokyo J.Math.. 21. 135-140 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Shoichiro Takakuwa: "A compactness theorem for harmonic maps"Differential Integral Equations. 11. 169-178 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Osamu Kobayashi: "Vertices of curves with complementary shells"Kobe J.Math.. 15. 59-65 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Shin Kato: "General existence of minimal surfaces of genus zero with catenoid ends and prescribed flux"Comm.Anal.Geom.. 8. 83-114 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Nobumitsu Nakauchi: "A Liouville theorem for P-harmonic maps" Osaka J.Math.35. 303-312 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi