• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on homotopy groups of localized finite complexes

Research Project

Project/Area Number 12640077
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKOCHI UNIVERSITY

Principal Investigator

SHIMOMURA Katsumi  Faculty of Science, Kochi University, Professor, 理学部, 教授 (30206247)

Co-Investigator(Kenkyū-buntansha) YOSIMURA Zen-ichi  Nagoya Institute of Technology, Professor, 工学部, 教授 (70047330)
KOMATSU Kazushi  Faculty of Science, Kochi University, Associate Professor, 理学部, 助教授 (00253336)
HEMMI Yutaka  Faculty of Science, Kochi University, Professor, 理学部, 教授 (70181477)
OHKAWA Tetsusuke  Hiroshima Institute of Technology, Associate Professor, 工学部, 助教授 (60116548)
YAGITA Nobuaki  Ibaraki University Faculty of Education, Professor, 教育学部, 教授 (20130768)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2001: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2000: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywordshomotopy groups / spheres / finite complexes / spectra / Morava K-theories / Bousfield localization / Johnson-Wilson spectrum / Adams-Novikov spectral sequence / Johnson-Wilsonスペクトラム
Research Abstract

In this research, we aimed two subjects. One is to make a more deep understanding of finite complexes itself and the Bousfield localization of finite complexes with respect to the Morava K-theories, and the other is to determie the homotopy groups π_*(L_<K(2)>S^O) of the Bousfield localized sphere spectrum L_2S^O with respect to K(2).
For the first one, Hemmi showed that even dimensional generator of the cohomology ring of a finite H-space appears only at dimension 8 and 20. This reflects an important feature of finite complexes. Komatsu studied finite real projective spaces through the bundle structure. Some information on the localization with respect to K(1) was obtained by Yosimura from the view point of KO_*.-quasi equivalence. Yagita obtained a result on the non-commutativity of the homotopy groups, and Ohkawa studied the Bousfield classes in stable homotopy categories.
For the second, we determined the homotopy groups π_*(L_K (2)S^O) at the prime 3 in the first year. The groups for the prime p > 3 was determined before. We also determine the E_2-term of the Adams-Novikov spectral sequence converging to the homotopy groups π_*(L_2 S^O) at the prime 2. Since the computation of the differentials of the spectral sequence is too difficult to make, we studied, in the second year, the homotopy groups of the Ravenel spectra T(m), and considered the Picard groups consisting of the invertible spectra in a stable homotopy, which is closely related to the homotopy groups. We obtained the homotopy groups π_*(L_nT(m)ΛV(n-1)) for m > n^2-n, and showed that there is no invertible spectrum in the stable homotopy category of E-local spectra as long as E is connective.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] K.Shimomura: "The homotopy groups π_*(L_nT(m)∧V(n-2))"Contemp. Math. (Recent Progress in Homotopy theory). 293. 285-297 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y.Kamiya, K.Shimomura: "E_*-homology spheres for a connective spectrum E"Contemp. Math. (SISTAG commemorative volume). (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y.Hemmi, J.Lin: "Cohomology Rings of 3-local finite H-spaces"J. Pure Appl. Algebra. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Kobayashi, K.Komatsu: "Extendibility and stable extendibility of the square of the normal bundle associated to an immersion of the real projective space"Hiroshima Math. J.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Z.Yoshimura: "The Quasi KO_*-types of CW-spectra X with KU_0X=Z/2^m and KU_1X=Z/2^n"Mem. Fac. Sci. Kochi Univ. (Math.). 22. 67-91 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Oshima, N.Yagita: "Non commutativity of self homotopy groups"Kodai Math. J. 24. 15-25 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Shimomura: "The homotopy groups π_*(L_nT(m)ΛV(n-2))"Contemp. Math. (Recent Progress in Homotopy theory). Vol. 293. 285-297 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y. Kamiya and K. Shimomura: "E_*-homology spheres for a connective spectrum E"Contemp. Math. (SISTAG com-memorative volume). (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y. Hemmi and J. Lin: "Cohomology Rings of 3-local finite H-spaces"J. Pure Appl. Algebra. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kobayashi and K. Komatsu: "Extendibility and stable extendibility of the square of the normal bundle associated to an immersion of the real projective space"Hiroshima Math. J.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Z. Yosimura: "The Quasi KO_*-types of CW-spectra X with KU_OX = Z/2^m and KU_1X = Z/2^n"Mem. Fac. Sci. Kochi Univ. (Math.). Vol. 22. 67-91 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Oshima and N. Yagita: "Non commutativity of self homotopy groups"Kodai Math. J.. Vol. 24. 15-25 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Shimomura: "The homotopy groups π^*(LnT(m)∧V(n-2))"Contemporary Math.(Rocent Progress in Homotopy theory). 293(印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Kamiya, K.Shimomura: "E^*-homology spheres for a connective spectrum E"Contemporary Math.(SISTAG commemorative volume). (印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Hemmi, J.Lin: "Cohomology Rings of 3-local finite H-spaces"J. Pure Appl. Algebra. (印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Kobayashi, K.Komatsu: "Extendibility and stable extendibility of the square of the normal bundle associated to an immersion of the real projective space"Hiroshima Math. J.. (印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] Z.Yosimura: "The Quasi KO^*-types of CW-spectra X with KU_0X=Z/2^m and KU_1X=Z/2^n"Mem. Fac. Sci. Kochi Univ.(Math.). 22. 67-91 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Oshima, N.Yagita: "Non commutativity of self homotopy groups"Kodai Math. J. 24. 15-25 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Shimomura: "The homotopy groups of the L_2-localized mod 3 Moore spectrum"J.Math.Soc.Japan. 51. 65-90 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Hemmi: "Mod p decompositions of mod p finite H-spaces"Mem.Fac.Sci.Kochi Univ.Ser.A (Math). 22(印刷中). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kobayashi and K.Komatsu: "Extendibility and stable extendibility of vector bundles over real projective spaces"Hiroshima Math.J.. 31. 99-106 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Z.Yosimura: "The Quasi KO_*-types of CW-spectra X with KU_0X〓Z/2^m and KU_1X〓Z/2^n"Mem.Fac.Sci.Kochi Univ.Ser.A (Math). 22(印刷中). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Oshima and N.Yagita: "Non commutativity of self homotopy groups"Kodai Math.J.. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Matumoto and T.Ohkawa: "On epimorphisms and Monomorphisms in the homotopy category of CW complexes"Japanese Journal of Math.. 26. 153-156 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi