• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Uniformity of Zeta Functions

Research Project

Project/Area Number 15H03612
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyushu University

Principal Investigator

WENG Lin  九州大学, 数理学研究院, 教授 (60304002)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥14,040,000 (Direct Cost: ¥10,800,000、Indirect Cost: ¥3,240,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2017: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2015: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords非可換ゼータ関数 / 格子とその安定性 / 既約群 / 翁ゼータ関数 / リーマン予想 / Eisenstein級数 / Ind-Pro 位相 / 数論的アデール コホモロジー / 既約群のゼータ関数 / フォッカー・プランク方程式 / ゼータ関数の特殊統一性 / 楕円曲線 / 量子計算と量子情報科学 / 算術トルソー / 算術 Higgs 束 / 算術 Hitchin フィブレーション / 高階数代数幾何符号 / 非可換ゼータ零点 / 非可換ゼータ函数の零点 / Fokker-Planck 方程式 / adelic 版ベクトル束拡張類 / リー代数の特性写像定理と整基定理 / スペクトル曲線とキャラメル曲線 / 算術特性曲線 / ゼータ函数の零点 / テータ関数 / ヒルベルト束 / 量子化 / ゼータ関数 / 弱リーマン予想 / 算術トーソーの安定性 / Eisenstein 周期 / 幾何的截面 / 解析的截面 / 算術コホモロジー / Arithmetic G-Torsor / 解析と幾何截断 / 半安定体積 / ゼータ函数の特殊統一性 / 幾何截断 / Arthur 解析截断 / 算術 G Torsor / 特殊 Weyl 元 / zeta 関数 / 例外型単純リー群 / Weyl 群 / theta関数 / 安定束 / E 型の例外型単純リー群 / WEYL 群 / 算術曲面 / IND-PRO 位相 / 算術 COHOMOLOGY 理論 / 相互法則 / 零点分布 / Motivic Eular 積 / Eisenstein 級数
Outline of Final Research Achievements

First, we introduce and study zeta functions for number fields associated to reductive groups and their maximal parabolic subgroups and establish their the Riemann hypothesis for Chevelley groups. Then we develop a special zeta uniformity theory for rank n non-abelian zeta functions and SLn zeta functions for both number fields, and function fields (with D. Zagier). As a by-product, with my formal phD student, K. Sugahara, we develop a new number theoretic adelic cohomology theory for arithmetic varieties using ind-pro topology, and as an application, we establish a new type of reciprocity laws for arithmetic surfaces and show that the first arithmetic adelic cohomology group for arithmetic surfaces are indeed finite, which offer a new type of intrinsic invariants for these surfaces. Among others, one big volume on 'Zeta functions of reductive groups and their zeros' of mine is published by the World Scientific and two joint papers with Zagier are published by the leading journal PNAS.

Academic Significance and Societal Importance of the Research Achievements

既約群に付随するゼータ関数および非可換ゼータ関数の導入及び研究は数学の中で著しく影響を与えている。実際、クレイ数学研究所の7つのミレニアム懸賞問題の一つのリーマン予想はリーマンゼータ関数の零点に関する問題である。我々の研究はリーマンゼータ関数を大きなフレームワークの中に置いて、ファミリー中の一種として考える。そのため、古典リーマンゼータ関数の零点の分布が高い階数の非可換ゼータ関数の零点の分布と繋いで、新しい研究の道を開いたと同時に、数学の理論の豊かさと数学研究方法の多様化を提供した。社会的羊達に群がるところの流行的な浅薄数学と違って、数学の本質は何処にあるかという根本的な問題に挑んでいる。

Report

(6 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • 2015 Annual Research Report
  • Research Products

    (19 results)

All 2020 2018 2016 Other

All Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Book (1 results) Remarks (15 results)

  • [Journal Article] HIGHER RANK ZETA FUNCTIONS FOR ELLIPTIC CURVES2020

    • Author(s)
      Lin WENG, Don Zagier
    • Journal Title

      Proceedings of the National Academy of Sciences of the United States of America

      Volume: 117(9) Issue: 9 Pages: 4546-4558

    • DOI

      10.1073/pnas.1912023117

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] HIGHER RANK ZETA FUNCTIONS AND SLn-ZETA FUNCTIONS FOR CURVES2020

    • Author(s)
      Lin WENG, Don Zagier
    • Journal Title

      Proceedings of the National Academy of Sciences of the United States of America

      Volume: 117(12) Issue: 12 Pages: 6279-6281

    • DOI

      10.1073/pnas.1912501117

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Central Extensions and Reciprocity Laws for Arithmetic Surfaces2016

    • Author(s)
      翁林
    • Organizer
      Arithmetic and Algebraic Geometry 2016
    • Place of Presentation
      東京大学
    • Year and Date
      2016-01-25
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Book] Zeta Functions of Reductive Groups and Their Zeros2018

    • Author(s)
      Lin WENG
    • Publisher
      World Scientific
    • Related Report
      2017 Annual Research Report
  • [Remarks] ~

    • URL

      https://www3.math.kyushu-u.ac.jp/~weng/Poincare.pdf

    • Related Report
      2019 Annual Research Report
  • [Remarks] 論文 'L. WENG, Arithmetic Characteristic Curves'

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/eigen.pdf

    • Related Report
      2018 Annual Research Report
  • [Remarks] 論文 ’LW, Zeta zeros and Fokker-Planck Equation'

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/Zeta&Hamiltonian(11).pdf

    • Related Report
      2018 Annual Research Report
  • [Remarks] 論文 'LW, Codes and Stability’

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/codes2.pdf

    • Related Report
      2018 Annual Research Report
  • [Remarks] 論文 'LW, Adelic Extension Classes, Atiyah ...'

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/adelicext(I_r)code.pdf

    • Related Report
      2018 Annual Research Report
  • [Remarks] 翁林 の webpage

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/

    • Related Report
      2018 Annual Research Report
  • [Remarks] Zetas and Their Zeros

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/

    • Related Report
      2017 Annual Research Report
  • [Remarks] List of Publications

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/publications.html

    • Related Report
      2017 Annual Research Report
  • [Remarks] Recent Writings

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/writings.html

    • Related Report
      2017 Annual Research Report
  • [Remarks] HIGHER RANK ZETA FUNCTIONS OF CURVES I

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/HigherRankI.pdf

    • Related Report
      2016 Annual Research Report
  • [Remarks] HIGHER RANK ZETA FUNCTIONS OF CURVES II

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/HigherRankII.pdf

    • Related Report
      2016 Annual Research Report
  • [Remarks] Zeros of Zetas for Exceptional Groups of Type E

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/wRHE.pdf

    • Related Report
      2015 Annual Research Report
  • [Remarks] Reciprocity laws for arithmetic surfaces

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/rec.pdf

    • Related Report
      2015 Annual Research Report
  • [Remarks] H1_ar for arithmetic surface is finite

    • URL

      https://arxiv.org/pdf/1603.02353.pdf

    • Related Report
      2015 Annual Research Report
  • [Remarks] Data on Zeta Zeros

    • URL

      http://www2.math.kyushu-u.ac.jp/~weng/zetas.html

    • Related Report
      2015 Annual Research Report

URL: 

Published: 2015-04-16   Modified: 2022-11-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi