Cortex inspired Deep Learning Algorithms and Applications on Knowledge Processing
Project/Area Number |
15H05327
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Web informatics, Service informatics
|
Research Institution | The University of Tokyo |
Principal Investigator |
Nakayama Kotaro 東京大学, 大学院工学系研究科(工学部), 特任講師 (00512097)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥14,560,000 (Direct Cost: ¥11,200,000、Indirect Cost: ¥3,360,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2016: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2015: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
|
Keywords | Deep Learning / 人工知能 / 計算科学 / 機械学習 / 脳科学 / Webデータ / スパースデータ / データサイエンス / AI / データ解析 / 人口知能 / ニュートラルネットワーク / スケーラビリティ / GPGPU |
Outline of Final Research Achievements |
In this research project, we aimed to develop scalable deep learning algorithms using the latest brain science findings, and have conducted research on flexible knowledge processing mechanism. There are two points to achieve this mechanism; a general-purpose knowledge processing model applicable to various tasks (applications) and a calculation model optimized for parallel processing capable of processing large-scale data in real time is there. The basic & theoretical research part and applied research part have been progressed as scheduled, and the results have been published as international conference papers and domestic journals.
|
Academic Significance and Societal Importance of the Research Achievements |
第三次AIブームを牽引しているDeep Learning技術は、計算時間や計算コストが大きな課題であった。本研究課題では,最新の脳科学の知見を活かしてより効率的かつ柔軟な知識処理機構を持つDeep Learning手法を実現することを目指して研究を進めてきた。予定どおり基礎研究と応用研究についての研究を進めることができ、国際会議・国内論文誌含め、多くの論文として対外発表することができた。
|
Report
(5 results)
Research Products
(19 results)
-
-
-
-
-
[Presentation] An analysis of human gaze data for autonomous medical image diagnostics2018
Author(s)
A. R. A. Ghani, K. Nishanth, Ai Nakajima, N. Kimura, P. Radkohl, S. Iwai, Y. Kawazoe, Y. Iwasawa, K. Nakayama, Y. Matsuo
Organizer
The 28th Annual Conference of the Japanese Neural Network Society (JNNS), Workshop
Related Report
Int'l Joint Research
-
-
-
-
-
-
-
-
-
-
-
-
-
-