Project/Area Number |
15K04510
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Education on school subjects and activities
|
Research Institution | Tohoku Gakuin University (2018) Tokyo University of Social Welfare (2015-2017) |
Principal Investigator |
Katou Takashi 東北学院大学, 文学部, 教授 (10709140)
|
Co-Investigator(Kenkyū-buntansha) |
守屋 誠司 玉川大学, 教育学部, 教授 (00210196)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 射影量 / 割合 / 速さ / 記述力 / 教育課程 / 教育内容 / 教育方法 / 国際比較調査 / 論述力 / 国際教育比較調査 |
Outline of Final Research Achievements |
In Germany, the problem of the first and second usages of specific events is studied in G6, and complex classified problems, including all usage, are studied in G7 with respect to the "projective quantity" such as rates and speeds. The solutions are limited in cases of equal ratios at the beginning, and the solutions obtained using the formulas are studied from in G7. Thus, using formulas begin earlier in Japan. We have also developed an educational method to improve the level of problem solving and descriptive ability. The learning plan is executed in the order of second, first, and third usages. While solving the problems, we organize the conditions in a multiplication-and-division quantity relation diagram. The descriptions should be given in the following order: from processing and conversion of the figure to seeking the answer. Based on the above information, we have developed an educational curriculum / content / method for teaching the " projective quantity " in Japan.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,複雑な文章問題は連鎖・複線型の前後に加工・換算が付随する8演算構造に集約できることを示し,演算構造の認知が問題解決力の向上に関与する可能性を示した。また,正解率の高い解決方法として,乗除数量関係図を用い第二用法で立式する方略を示し,問題解決過程を記述する内容と順序を明示した。開発した問題解決・記述方法を反復しながら学習するワークシートを完成させ,さらに,理想的な教育課程・内容・方法を示した。 これらにより,領域固有の知識の習得が不可欠とされている複雑な文章問題の問題解決力の向上方法と問題解決過程の記述力を高める教育方法に関する一つの突破口を示したという学術的意義・社会的意義を持つ。
|