• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Newform Theory for automorphic forms and its applications to Iwasawa Theory

Research Project

Project/Area Number 15K04783
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNara Women's University

Principal Investigator

Okazaki Takeo  奈良女子大学, 自然科学系, 准教授 (80437334)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords保型形式 / 保型表現 / 算術離散群 / 新形式理論 / ラングランズ対応 / Siegel 保型形式 / ゼータ関数 / Modular forms / L-function / New form / Modular variety / NewForm
Outline of Final Research Achievements

I tried to construct a newform theory for irreducible admissible representations of GSp(4), that is Siegel modular forms of degree 2 in the classical sense. I have completed to the construction for the generic case, which is a generalization of Roberts and Schmidt for PGSp(4), and for the Saito-Kurokawa lifts, a non-generic case.

Academic Significance and Societal Importance of the Research Achievements

楕円保型形式のNewform理論が, 1970年代に構築され様々な応用があることからSiegel保型形式でもまた重要である.様々な研究分野からも重要視される次数2の正則Siegel保型形式は, 大域Whittaker模型を持たず, 大域Bessel模型でNewform理論を構築することが望まれる. 今回局所Whittaker 模型をもつcaseと大域Bessel模型を持つ1caseである斎藤-黒川リフトでNewform理論を構築した. この結果により一般に, 今回新たに発見した擬-非分裂型paramodular群によりNewform理論が構築されることが期待される.

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (2 results)

All 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results)

  • [Journal Article] On some Siegel threefold related to the tangent cone of the Fermat quartic surface2017

    • Author(s)
      Takeo Okazaki, Takuya Yamauchi
    • Journal Title

      Advances in Theoretical and Mathematical Physics

      Volume: 21 Pages: 585-630

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed
  • [Presentation] New Form for some algebrai groups2017

    • Author(s)
      Takeo Okazaki
    • Organizer
      東京電機大学第 6 回数学講演会
    • Place of Presentation
      東京電機大学
    • Year and Date
      2017-03-09
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi