• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Modular representations of algebraic groups

Research Project

Project/Area Number 15K04789
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka City University

Principal Investigator

KANEDA masaharu  大阪市立大学, 大学院理学研究科, 教授 (60204575)

Research Collaborator TANISAKI TOSHIYUKI  
YAGITA NOBUAKI  
TEZUKA MICHISHIGE  
FURUSAWA MASAAKI  
KIMURA YOSHIYUKI  
KAWATA SHIGETO  
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsalgebraic groups / Frobenius morphism / representation theory / Frobenius contraction / Steinberg module / injective modules / good filtration / exceptional sequence / Frobenius direct image / G_1P-Verma module / graded induction / translation functor / Koszulity / geometrically split / Frobenius splitting / Frobenius cosplitting / geometric splitting
Outline of Final Research Achievements

Let G denote a reductive algebraic group split over a field of characteristic p>0. In joint work with Abe noriyuki we determined for p>>0 the Loewy structure of the G_1T-Verma modules of singular highest weights, G_1 the Frobenius kernel of G and T a maximal torus of G. On the Grassmannian Gr(2,5) and on G/P with G in type G_2 and P a maximal parabolic subgroup of G we verified for p>>0 our conjecture that the the Frobenius direct image of the structure sheaf of G/P contains a Karoubian complete strongly exceptional poset of coherent sheaves. In type G_2 we also found that the Frobenius direct image has a nonzero self-extension, implying that the sheaf of rings of small differential operator on G/P has a non-vanishing 1st cohomology. In joint work with Michel Gros we described a new characterization, thanks to Donkin, of the Frobenius contraction, showing in particular that the Frobenius contraction preserves injectivity and the existence of a good filtration.

Academic Significance and Societal Importance of the Research Achievements

上記中,GがG_2型でPのLevi部分群がGのshort simple rootを持つときには,G/Pの構造層のFrobenius direct imageは,我々の予想通りKaroubian complete strongly exceptional posetを持つだけで無く,余分な直既約成分を持ち,そのself-extensionは消えないことを発見した。新たなFrobenius contractionの特徴付けにより,Frobenius contractionがinjectivityやgood filtrationの存在を保つことが分かる。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (14 results)

All 2019 2018 2017 2016 2015 Other

All Int'l Joint Research (3 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Acknowledgement Compliant: 2 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results)

  • [Int'l Joint Research] IRMAR-UMR/Universite de Rennes, Campus de Beaulieu/35042 Rennes cedex(フランス)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Universite de Rennes(France)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Universite de Rennes(France)

    • Related Report
      2016 Research-status Report
  • [Journal Article] On the Frobenius direct image of the structure sheaf of a homogeneous projective variety2018

    • Author(s)
      Kaneda, M.
    • Journal Title

      Journal of Algebra

      Volume: 512 Pages: 160-188

    • DOI

      10.1016/j.jalgebra.2018.07.003

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Contraction par Frobenius et modules de Steinberg2018

    • Author(s)
      Gros, M. and Kaneda, M.
    • Journal Title

      Ark. Mat.

      Volume: 56 Issue: 2 Pages: 319-332

    • DOI

      10.4310/arkiv.2018.v56.n2.a7

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The Loewy structure of G1T-Verma modules of singular highest weights2017

    • Author(s)
      Abe, N. and Kaneda, M.
    • Journal Title

      Journal of the Institute of Mathematics of Jussieu

      Volume: 16-4 Issue: 4 Pages: 887-898

    • DOI

      10.1017/s1474748015000274

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Another strongly exceptional collection of coherent sheaves on a Grassmannian2017

    • Author(s)
      KANEDA masaharu
    • Journal Title

      Journal of Algebra

      Volume: 473 Pages: 352-373

    • DOI

      10.1016/j.jalgebra.2016.10.043

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Un scindage du morphisme de Frobenius quantique2015

    • Author(s)
      Gros, M. and Kaneda, M.
    • Journal Title

      Arkiv der Matematik

      Volume: 53-2 Issue: 2 Pages: 271-301

    • DOI

      10.1007/s11512-014-0205-8

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Splitting of the Frobenius morphism2019

    • Author(s)
      兼田正治
    • Organizer
      富山大学数学教室談話会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Frobenius contraction2019

    • Author(s)
      兼田正治
    • Organizer
      大阪表現論seminar
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Frobenius contraction, a new operation on the rational modules for reductive algebraic groups in positive characteristic2017

    • Author(s)
      Kaneda, M.
    • Organizer
      Combinatorics of Group Actions and its Applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Williamson’s construction of torsion in the intersection cohomology of Schubert va- rieties2017

    • Author(s)
      Kaneda, M.
    • Organizer
      Toric Topology 2017 in Osaka
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Frobenius contraction, as Donkin puts it2016

    • Author(s)
      KANEDA masaharu
    • Organizer
      Algebra Seminar
    • Place of Presentation
      Bernouilli Center, EPFL
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Other aspects of Frobenius splitting2015

    • Author(s)
      Kaneda, M.
    • Organizer
      Representation Theory
    • Place of Presentation
      Institut Mittag-Leffler, Djursholm, Sweden
    • Year and Date
      2015-05-13
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi