• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Perfect algebraic independence properties over non-Archimedean valuation fields

Research Project

Project/Area Number 15K04792
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKeio University

Principal Investigator

Tanaka Taka-aki  慶應義塾大学, 理工学部(矢上), 准教授 (60306850)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords代数的独立性 / Mahler関数 / p進数 / 正標数 / 超越数 / 行列値関数 / 行列環 / p進絶対値 / 群作用 / 代数的独立 / Hecke-Mahler級数
Outline of Final Research Achievements

In this project the research representative constructed certain functions having ultimate algebraic independence properties especially over typical non-Archimedean valuation fields. First, he obtained the infinite algebraically independent sets consisting of numbers which can be regarded both as real and as p-adic for a finite number of primes p. Then he established the base for constructing functions having perfect algebraic independence properties over p-adic number fields. Over function fields of positive characteristic, the research representative constructed, using Mahler functions of several variables, the functions having differential perfect algebraic independence properties. Finally, he extended the concept of transcendence and algebraic independence to matrix rings as applications of the functions having differential perfect algebraic independence properties.

Academic Significance and Societal Importance of the Research Achievements

超越数の間の構造を決定することが超越数論の究極の目標であるが、現状ではこの目標は遥か先にある。超越数の構造決定の前段階として、無限集合でその任意の有限部分集合が有理数体上で代数的独立な超越数から成るものの量産が重要である。なぜなら、そのような超越数たちを有理数体に添加して得られる拡大体を最も効率良く最大化できるからである。従って、この目的を単独の関数によって達成できる完全代数的独立性および微分完全代数的独立を有する関数の構成は学術的に意義深い。また、本補助金による社会的貢献の一環として、国際研究集会を主宰し多くの参加者を得て2国間のみならず多国間の国際共同研究の発展に寄与したことが挙げられる。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (9 results)

All 2019 2018 2017 2016 Other

All Journal Article (3 results) (of which Open Access: 1 results,  Peer Reviewed: 2 results) Presentation (4 results) (of which Int'l Joint Research: 2 results) Remarks (1 results) Funded Workshop (1 results)

  • [Journal Article] Algebraic independence of the values of a certain map defined on the set of orbits of the action of Klein four-group2019

    • Author(s)
      田中 孝明
    • Journal Title

      数理解析研究所講究録

      Volume: 2131 Pages: 177-187

    • NAID

      120006888073

    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] Algebraic independence of the values of the Hecke-Mahler series and its derivatives at algebraic numbers2018

    • Author(s)
      Tanaka Taka-aki、Tanuma Yusuke
    • Journal Title

      International Journal of Number Theory

      Volume: 14 Issue: 09 Pages: 2369-2384

    • DOI

      10.1142/s1793042118501440

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Algebraic independence of the values of functions satisfying Mahler type functional equations under the transformation represented by a power relatively prime to the characteristic of the base field2018

    • Author(s)
      Goto Akinari、Tanaka Taka-aki
    • Journal Title

      Journal of Number Theory

      Volume: 184 Pages: 384-410

    • DOI

      10.1016/j.jnt.2017.08.026

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Algebraic independence of the values of a certain map defined on the set of orbits of the action of Klein four-group2018

    • Author(s)
      Tanaka Taka-aki
    • Organizer
      解析的整数論とその周辺
    • Related Report
      2018 Research-status Report
  • [Presentation] Algebraic independence properties of a certain map defined on the set of orbits of the action of Klein four-group2018

    • Author(s)
      Tanaka Taka-aki
    • Organizer
      Keio-Yonsei Number Theory Workshop
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] On the functions having `perfect' algebraic independence property at algebraic numbers2017

    • Author(s)
      Taka-aki Tanaka
    • Organizer
      Diophantine Analysis and Related Fields 2017
    • Place of Presentation
      日本大学(東京都・千代田区)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 有限個の素数pに対するQpとRの`共通部分'に属する超越数から成る代数的独立な無限集合について2016

    • Author(s)
      田中 孝明, 中島 ミホ
    • Organizer
      日本数学会年会
    • Place of Presentation
      筑波大学(茨城県・つくば市)
    • Year and Date
      2016-03-18
    • Related Report
      2015 Research-status Report
  • [Remarks] Diophantine Analysis and Related Fields 2018

    • URL

      http://www.math.keio.ac.jp/~takaaki/DARF2018/DARF2018prog_j.html

    • Related Report
      2017 Research-status Report
  • [Funded Workshop] Diophantine Analysis and Related Fields 20182018

    • Related Report
      2017 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi