• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Crystal bases for Kirillov-Reshetikhin modules and their combinatorial realization

Research Project

Project/Area Number 15K04803
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

Sagaki Daisuke  筑波大学, 数理物質系, 教授 (40344866)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords量子アフィン代数 / 結晶基底 / パス模型 / 有限次元既約表現 / Kirilov-Reshetikhin 加群 / Lakshmibai-Seshadri パス / Macdonald 多項式 / 標準単項式理論 / Kirillov-Reshetikhin 加群 / Chevalley 型の公式 / Monk 型の公式 / van der Kallen 加群 / Lakshmiba-Seshadri パス
Outline of Final Research Achievements

(1) I constructed a quotient module of a Demazure-type submodule in an extremal weight module whose graded character is identical to a specialization of a nonsymmetric Macdonald polynomial.
(2) I extended the (classical) standard monomial theory (due to Peter Littelmann) to the case of semi-infinite Lakshmibai-Seshadri paths, and gave the semi-infinite standard monomial theory. As applications, I gave Chevalley-type formulas for graded characters of Demazure-type submodules in extremal weight modules for dominant and antidominant integral weights.
(3) I constructed a level-zero van der Kallen module as a quotient of an extremal weight module, and proved that its graded character is identical to a specialization of a nonsymmetric Macdonald polynomial.

Academic Significance and Societal Importance of the Research Achievements

当研究課題の主な研究対象である Kirilov-Reshetikhin 加群のうち,レベルが1のものについては「レベル・ゼロ基本表現」と呼ばれる(結晶基底を持つ)有限次元表現と一致していることが知られている.また,レベル・ゼロ基本表現のいくつかのテンソル積は量子 Weyl 加群と呼ばれており,エクストリーマル・ウェイト加群の (Demazure 型の部分加群の) 商加群として得られることが知られている.今回の結果は,非対称 Macdonald 多項式の特殊化と,レベル1のKirilov-Reshetikhin 加群を結びつける重要な研究成果である.

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (16 results)

All 2020 2019 2018 2017 2016

All Journal Article (11 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 11 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results)

  • [Journal Article] Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at $t=\infty$2020

    • Author(s)
      S.Naito and D.Sagaki
    • Journal Title

      Transformation Groups

      Volume: ---

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Equivariant $K$-theory of semi-infinite flag manifolds and Pieri-Chevalley formula2020

    • Author(s)
      S.Kato, S.Naito, and D.Sagaki
    • Journal Title

      Duke Mathematical Journal

      Volume: ---

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Tensor product decomposition theorem for quantum Lakshmibai-Seshadri paths and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths2020

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Journal of Combinatorial Theory. Series A

      Volume: 169 Pages: 105122-105122

    • DOI

      10.1016/j.jcta.2019.105122

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Representation-theoretic interpretation of Cherednik-Orr's recursion formula for the specialization of nonsymmetric Macdonald polynomials at t = infinity2018

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Transform. Groups

      Volume: in press Issue: 1 Pages: 155-191

    • DOI

      10.1007/s00031-017-9467-0

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Specialization of nonsymmetric Macdonald polynomials at t = \infty and Demazure submodules of level-zero extremal weight modules2017

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: in press Issue: 4 Pages: 2739-2783

    • DOI

      10.1090/tran/7114

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] A uniform model for Kirillov-Reshetikhin crystals III. Nonsymmetric Macdonald polynomials at t = 0 and Demazure characters2017

    • Author(s)
      C.Lenart, S.Naito, D.Sagaki, A.Schilling, and M.Shimozono
    • Journal Title

      Transformation Groups

      Volume: 印刷中 Issue: 4 Pages: 1041-1079

    • DOI

      10.1007/s00031-017-9421-1

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and $P=X$2017

    • Author(s)
      C.Lenart, S.Naito, D.Sagaki, A. Schilling, and M. Shimozono
    • Journal Title

      Int. Math. Res. Not. IMRN

      Volume: 2017 Pages: 4259-4319

    • DOI

      10.1093/imrn/rnw129

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Specialization of nonsymmetric Macdonald polynomials at t=∞ and Demazure submodules of level-zero extremal weight modules2017

    • Author(s)
      Satoshi Naito, Fumihiko Nomoto and Daisuke Sagaki
    • Journal Title

      Transactions of the AMS

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Demazure submodules of level-zero extremal weight modules2016

    • Author(s)
      Satoshi Naito and Daisuke Sagaki
    • Journal Title

      Mathematische Zeitschrift

      Volume: 印刷中 Issue: 3-4 Pages: 937-978

    • DOI

      10.1007/s00209-016-1628-7

    • Related Report
      2016 Research-status Report 2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras2016

    • Author(s)
      Motohiro Ishii, Satoshi Naito and Daisuke Sagaki
    • Journal Title

      Advances in Mathematics

      Volume: 290 Pages: 967-1009

    • DOI

      10.1016/j.aim.2015.11.037

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Application of a Z3-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices2016

    • Author(s)
      Daisuke Sagaki and Hiroki Shimakura
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 368 Issue: 3 Pages: 1621-1646

    • DOI

      10.1090/tran/6382

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Chevalley type and Monk type formulas for level-zero Demazure modules2019

    • Author(s)
      Daisuke Sagaki
    • Organizer
      Crystals and Their Generalizations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Combinatorial standard monomial theory for semi-infinite Lakshmibai-Seshadri paths2018

    • Author(s)
      Daisuke Sagaki
    • Organizer
      Conference on Algebraic Representation Theory
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to extremal weight modules for quantum affine algebras2017

    • Author(s)
      Daisuke Sagaki
    • Organizer
      Spring School on Representation Theory
    • Place of Presentation
      東京大学 (東京都目黒区)
    • Year and Date
      2017-03-13
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras2017

    • Author(s)
      Daisuke Sagaki
    • Organizer
      Lectures in Seoul National University
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Specializations of nonsymmetric Macdonald polynomials and Demazure type submodules of extremal weight modules2017

    • Author(s)
      Daisuke Sagaki
    • Organizer
      Algebraic and Combinatorial Aspects in Integrable Systems
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi