• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

brunching rules for the Macdonald polynomials and geometry

Research Project

Project/Area Number 15K04808
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

Shiraishi Junichi  東京大学, 大学院数理科学研究科, 准教授 (20272536)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsMacdonald多項式 / Koornwinder多項式 / matrix inversion / Catalan数 / Askey-Wilson多項式 / 量子戸田系 / Ruijsenaars作用素 / screening作用素 / C型マクドナルド多項式 / C型ホール・リトルウッド多項式 / コストカ多項式 / qカタラン数 / Laumon空間 / スクリーニング作用素 / 変形W代数 / 超幾何級数 / Lassalleの予想式
Outline of Final Research Achievements

In the joint work with A. Hoshino, we studied the explicit formula (for the transition matrices or brunching rules) for the Koornwinder polynomials associated with one column diagrams. It was shown that the matrix inversion formulas of Bressoud or Krattenthaler play the central role in these combinatorial objects, i.e. the transition matrices. As applications, we proved that the entries of the transition matrix from the monomial polynomials to the Macdonald polynomials of type C satisfy an analogue of the recurrence relations for the Catalan triangle numbers, and also proved that the Kostka polynomials are given by the q-Catalan numbers.

Academic Significance and Societal Importance of the Research Achievements

Koornwinder多項式は、多変数の直行多項式系ないし超幾何級数に関する組合わせ的公式の分野で最も一般なクラスを与える。その明示的公式、組合わせ的構造については、まだ理解出来ていないことが多く残されている。困難の原因は、幾何学的表現論の見地からは、問題に付随する多様体の特異点の解消の方法が知られていないことに起因する。将来の課題である一般論への足がかりとして、分割が一行型の場合に限定して一般の分割で起きうる困難を極力減らすことで、Koornwinder多項式に付随する超幾何級数に関する組合わせ的公式の本質を究明し、それをmatrix inversionの理論に集約・整理した。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017 2015 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results,  Open Access: 2 results,  Acknowledgement Compliant: 2 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Int'l Joint Research] Higher School of Economics(ロシア連邦)

    • Related Report
      2015 Research-status Report
  • [Journal Article] Macdonald Polynomials of Type Cn with One-Column Diagrams and Deformed Catalan Numbers2018

    • Author(s)
      Ayumu Hoshino, Jun'ichi Shiraishi
    • Journal Title

      SIGMA

      Volume: 14 Pages: 101-133

    • DOI

      10.3842/sigma.2018.101

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Tableau formulas for one-row Macdonald polynomials of types Cn and Dn2015

    • Author(s)
      B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi
    • Journal Title

      SIGMA Symmetry Integrability Geom. Methods Appl.

      Volume: 11 Pages: 1-21

    • DOI

      10.3842/sigma.2015.100

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Some transformation formulas associated with Askey-Wilson polynomials and Lassalle's formulas for Macdonald-Koornwinder polynomials2015

    • Author(s)
      A. Hoshino, M. Noumi and J. Shiraishi
    • Journal Title

      Mosc. Math. J.

      Volume: 15 Pages: 293-318

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Kostka polynomials with one column diagrams of type $B_n$, $C_n$ and $D_n$2019

    • Author(s)
      星野歩, 白石潤一
    • Organizer
      日本数学会年会, 2019年3月20日, 東京工業大学
    • Related Report
      2018 Annual Research Report
  • [Presentation] Affine Screening Operators, Affine Laumon Spaces, and Conjectures Concerning Non-Stationary Ruijsenaars Functions2019

    • Author(s)
      Jun'ichi Shiraishi
    • Organizer
      Elliptic integrable systems, special functions and quantum field theory, 16-20 June, 2019, Nordita, Stockholm
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Matrix inversion for Koornwinder polynomials with one-column diagram2018

    • Author(s)
      星野歩, 白石潤一
    • Organizer
      日本数学会秋季総合分科会, 2018年9月24日, 岡山大学
    • Related Report
      2018 Annual Research Report
  • [Presentation] 一列型C, D型Macdonald多項式の明示公式2018

    • Author(s)
      星野歩, 白石潤一
    • Organizer
      日本数学会年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Some conjectures about the Macdonald polynomials of type C2017

    • Author(s)
      Junichi Shiraishi
    • Organizer
      Elliptic Hypergeometric Functions in Combinatorics, Integrable Systems and Physics
    • Place of Presentation
      University of Vienna (オーストリア、ウイーン)
    • Year and Date
      2017-03-20
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Some conjectures about duality identities associated with affine rootsystems and screened vertex operators with toroidal structure2017

    • Author(s)
      Junichi Shiraishi
    • Organizer
      Exact methods in low dimensional statistical physics, Cargoes International School
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2015-04-16   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi