• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of log abelian varieties and its application

Research Project

Project/Area Number 15K04811
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionYokohama National University

Principal Investigator

Kajiwara Takeshi  横浜国立大学, 大学院工学研究院, 教授 (00250663)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords対数構造 / 退化多様体 / アーベル多様体
Outline of Final Research Achievements

We study moduli space of abelian varieties, and our purpose is to find suitable degenerating objects in logarithmic geometry. In our research, we have studied foundation on polarizations of logarithmic abelian varieties, and also local moduli spaces of them and GAGF. We show cubic theorem on torsors with relevant multiplicative groups on logarithmic abelian varieties, and existence of projective models of them.

Academic Significance and Societal Importance of the Research Achievements

対数アーベル多様体は、アーベル多様体の退化と考えられる多様体では、群構造と完備性という、代数幾何における扱いやすい条件が両立しない点を補う、新しい空間であり、対数代数空間の例である。アーベル多様体の幾何を対数アーベル多様体へ拡張することで、退化アーベル多様体のさまざまな様相が統一的にとらえらる。本研究では、代数幾何の基本的な不変量や射影性の概念を定式化し、また、代数幾何と形式幾何との対応を確立した。これにより、本理論の基礎づけ、応用に貢献している。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (2 results)

All 2020 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results)

  • [Journal Article] Log abelian varieties, Part VI:local moduli and GAGF2020

    • Author(s)
      Takeshi Kajiwara, Kazuya Kato, and Chikara Nakayama
    • Journal Title

      Yokomama Mathematical Journal

      Volume: 65 Pages: 53-75

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Logarithmic abelian varieties, part V: projective models2018

    • Author(s)
      Takeshi Kajiwara, Kazuya Kato, Chikara Nakayama
    • Journal Title

      Yokohama Mathematical Journal

      Volume: 64 Pages: 21-82

    • NAID

      120006633341

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi