• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on diameter conjecture on flat tori in the unit sphere

Research Project

Project/Area Number 15K04836
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionUtsunomiya University

Principal Investigator

Kitagawa Yoshihisa  宇都宮大学, 教育学部, 教授 (20144917)

Co-Investigator(Renkei-kenkyūsha) AIHARA Yosihiro  福島大学, 人間発達文化学類, 教授 (60175718)
UMEHARA Masaaki  東京工業大学, 大学院情報理工学研究科, 教授 (90193945)
Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords微分幾何 / 部分多様体 / 平坦トーラス / 3次元球面 / 直径 / 剛性 / 正則閉曲線 / 2重接触 / 微分幾何学
Outline of Final Research Achievements

Diameter conjecture on flat tori in the unit 3-sphere states that the extrinsic diameter of isometrically immersed flat tori in the unit 3-sphere is equal to π. To prove this conjecture, it is sufficient to prove bi-tangent conjecture on periodic admissible pairs (c_1,c_2) in the unit 2-sphere, which states that if the self-intersection numbers of the closed curves c_1 and c_2 are odd, then c_1 and c_2 have a bi-tangent of the second kind.In this research, we study bi-tangent conjecture on periodic admissible pairs (c_1,c_2), and we proved that the conjecture is true if the curve c_1 contains an negative shell.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (2 results)

All 2018 2016

All Presentation (2 results) (of which Invited: 1 results)

  • [Presentation] 3次元球面内の平坦トーラスに関する直径予想2018

    • Author(s)
      北川義久
    • Organizer
      榎本一之教授 退職記念研究集会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 3次元球面内の平坦トーラスに関する直径予想2016

    • Author(s)
      北川義久
    • Organizer
      直観幾何学 2016
    • Place of Presentation
      熊本大学
    • Year and Date
      2016-02-07
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi