• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deformation Space of Hyperbolic Manifolds and Lorentzian Geometry

Research Project

Project/Area Number 15K04841
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

ITO kentaro  名古屋大学, 多元数理科学研究科, 准教授 (00324400)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords双曲幾何 / 擬リーマン幾何 / 擬リーマン空間形 / ローレンツ幾何 / ローレンツ多様体 / クライン群
Outline of Final Research Achievements

We study 3-dimensional pseudo-Riemannian space form which have relation with hyperbolic geometry. We start construction of the geometry of SL(2,C). We study fundamental properties of totally geodesic pseudo-Riemannian space form contained in SL(2,C). Especially, we start construction of theory of surfaces in SL(2,C), wich is a generalization of that in pseudo-Riemannian space forms.

Academic Significance and Societal Importance of the Research Achievements

双曲幾何をより広い枠組みで捕らえる試みを行っており,将来的な発展が見込まれる.

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017 2016 2015 Other

All Journal Article (1 results) Presentation (7 results) (of which Invited: 7 results) Remarks (2 results)

  • [Journal Article] 幾何学と無限(双曲幾何とクライン群)2017

    • Author(s)
      糸 健太郎
    • Journal Title

      数理科学

      Volume: 2月号 Pages: 22-28

    • Related Report
      2016 Research-status Report
  • [Presentation] SL(2,R) とSL(2,C) の幾何とその双曲幾何への応用2019

    • Author(s)
      糸 健太郎
    • Organizer
      大阪大学低次元トポロジーセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Thurston's earthquake theorem and geometry of SL(2,R)2019

    • Author(s)
      糸 健太郎
    • Organizer
      Beltrami 方程式勉強会Part II, 東京工業大学
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 3 次元反ド・ジッター空間の一般化としてのSL(2,C)2018

    • Author(s)
      糸 健太郎
    • Organizer
      Geometry of Riemann surfaces and related topics, 金沢大学
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] SL(2,R) とSL(2,C) の幾何とその双曲幾何への応用2018

    • Author(s)
      糸 健太郎
    • Organizer
      金沢大学 数学教室 談話会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 3 次元反ド・ジッター空間の一般化としての SL(2,C)2017

    • Author(s)
      糸 健太郎
    • Organizer
      東京工業大学 談話会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 双曲幾何と反ド・ジッター空間2016

    • Author(s)
      糸 健太郎
    • Organizer
      第51回 函数論サマーセミナー
    • Place of Presentation
      山梨県笛吹市
    • Year and Date
      2016-09-03
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 双曲幾何からローレンツ幾何へ2015

    • Author(s)
      糸 健太郎
    • Organizer
      早稲田双曲幾何幾何学的群論セミナー
    • Place of Presentation
      早稲田大学
    • Year and Date
      2015-11-27
    • Related Report
      2015 Research-status Report
    • Invited
  • [Remarks] Kentaro Ito

    • URL

      http://www.math.nagoya-u.ac.jp/~itoken/

    • Related Report
      2018 Annual Research Report 2016 Research-status Report 2015 Research-status Report
  • [Remarks] Ito Kentaro

    • URL

      http://www.math.nagoya-u.ac.jp/~itoken/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi