• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The study on the deformation space of periodic minimal surfaces and its applications

Research Project

Project/Area Number 15K04859
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionMeijo University

Principal Investigator

Ejiri Norio  名城大学, 理工学部, 教授 (80145656)

Project Period (FY) 2015-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
KeywordsRiemann surface / minimal surface / flat torus / Morse index / signature / CMC安定 / H amily / tP,tD family / rPD family / triply periodic surface / 相転移 / Jacobi operator / index / nullity / special geometry / deformation space / period map / limit / hyperelliptic / triply periodic / limit of minimal surface / Weierstrass data space
Outline of Final Research Achievements

In our world, soap bubbles are round. The proof is given by Mathematics. Thus, shapes except sphere do not appear. In a 3 dimensional flat torus(2 dimensional flat torus may be the face of a doughnut), what is the shape of soap bubbles? In 1992, Ross proved that Shoen's Gyroid, Schwarz' P surface and D surface are soap bubbles. We proved that H surface is a soap bubble and Schwarz'P surface is transformed into D surface under the deformation of the 3 dimensional flat torus containing P surface.

Academic Significance and Societal Importance of the Research Achievements

n次元平坦トーラスの種数gの極小曲面面のMorse indexを求めるために変形空間にspecial pseudo Kaehler structure with signature (p,q)を導き、 q とMorse indexとの不等式とMorse indexを求めるalgorithmを与た。結果としてたくさんの極小曲面のMorse index が求められ応用として3次元平坦トーラスのシャボン玉の多様性がわかったことです。

Report

(7 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018 2016 2015

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 2 results,  Acknowledgement Compliant: 2 results) Presentation (1 results)

  • [Journal Article] The Existence of rG Family and tG Family, and Their Geometric Invariants2020

    • Author(s)
      Ejiri Norio、Shoda Toshihiro
    • Journal Title

      Mathematics

      Volume: 8 Issue: 10 Pages: 1693-1693

    • DOI

      10.3390/math8101693

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Stability of triply periodic minimal surfaces2019

    • Author(s)
      Ejiri Norio、Shoda Toshihiro
    • Journal Title

      Differential Geometry and its Applications

      Volume: 67 Pages: 101555-101555

    • DOI

      10.1016/j.difgeo.2019.101555

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A construction of a two-parameter family of triply periodic minimal surfaces2018

    • Author(s)
      N. Ejiri, S. Fujimori and T. Shoda
    • Journal Title

      Kobe J. Math.

      Volume: 35 Pages: 45-93

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On limits of triply periodic minimal surfaces2018

    • Author(s)
      Ejiri Norio、Fujimori Shoichi、Shoda Toshihiro
    • Journal Title

      Annali di Matematica Pura ed Applicata (1923 -)

      Volume: 197 Issue: 6 Pages: 1739-1748

    • DOI

      10.1007/s10231-018-0746-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] The Morse index of a triply periodic minimal surface2018

    • Author(s)
      Ejiri Norio、Shoda Toshihiro
    • Journal Title

      Differential Geometry and its Applications

      Volume: 58 Pages: 177-201

    • DOI

      10.1016/j.difgeo.2018.01.006

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A remark on limits of triply periodic minimal surfaces of genus 32015

    • Author(s)
      N. Ejiri, S. Fujimori and T. Shoda
    • Journal Title

      Topology and its Applications

      Volume: 196 Pages: 880-903

    • DOI

      10.1016/j.topol.2015.05.014

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On hyperelliptic minimal surfaces with even genus2015

    • Author(s)
      N. Ejiri and T. Shoda
    • Journal Title

      Current Developments in Differential Geometry and its Related Fields

      Volume: 3 Pages: 129-138

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] トーラスの極小曲面に関するWeierstrass data 空間の構造2016

    • Author(s)
      江尻典雄
    • Organizer
      水戸幾何小研究集会
    • Place of Presentation
      茨城大学理工学部
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi