• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on homotopy sets and families of homotopy invariant subsets

Research Project

Project/Area Number 15K04884
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionFukuoka University

Principal Investigator

ODA Nobuyuki  福岡大学, 理学部, 教授 (80112283)

Project Period (FY) 2015-10-21 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords幾何学 / トポロジー / 自己ホモトピー同値写像 / 自己親密数 / K群 / ファイブレイション / コファイブレイション / コゴットリーブ集合 / コゴトリーブ集合 / コファイブレーション / コゴットリーブ群 / ホモトピー同値
Outline of Final Research Achievements

A theorem is proved on the relation between cofibrations and the self-closeness numbers, and its dual, that is, a theorem on the relation between fibrations and the self-closeness numbers. The K group of the ring of continuous functions for spaces with special conditions is presented by cohomology groups. A result is proved on the homotopy set of maps which preserve cyclic elements and its dual. A theorem is proved about the groups of the self homotopy equivalences of smash products of a space and the semi-direct products of the direct product of the groups of the self homotopy equivalences of the space and the symmetric groups, and moreover, some general results are proved making use of cohomology groups.

Academic Significance and Societal Importance of the Research Achievements

自己親密数に関する結果は新しい結果であり,特に,コファイブレイションおよびファイブレイションと自己親密数に関する定理は今後の研究に有用である.連続関数環のK群に関する結果,サイクリック元を保存する写像のホモトピー集合とその双対の結果,コゴトリーブ集合について特別な場合に短完全列が存在すること,空間の約積の自己ホモトピー同値写像類の群と空間の自己ホモトピー同値写像類の群と対称群の半直積との関係を与える定理は新しい研究の基礎となる結果であり,これらの分野の今後の研究に役立つ.

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results)

  • [Int'l Joint Research] Korea University/Kookmin University(韓国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Korea University/Kookmin University(韓国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Self-maps of spaces in fibrations2018

    • Author(s)
      N. Oda and T. Yamaguchi
    • Journal Title

      Homology, homotopy and applications

      Volume: 20 Issue: 2 Pages: 289-313

    • DOI

      10.4310/hha.2018.v20.n2.a15

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Rational cup product and Algebraic K_0-groups of rings of continuous functions2018

    • Author(s)
      H. Kihara and N. Oda
    • Journal Title

      Proceedings of the Edinburgh Mathematical Society

      Volume: 61 Issue: 3 Pages: 607-622

    • DOI

      10.1017/s0013091517000359

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Self-homotopy equivalences and cofibrations2017

    • Author(s)
      N. Oda and T. Yamaguchi
    • Journal Title

      Topology and its Applications

      Volume: 228

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The generalized CoGottlieb groups, related actions and exact sequences2017

    • Author(s)
      H.-W. Choi, J.-R. Kim and N. Oda
    • Journal Title

      J. Korean Math. Soc.

      Volume: 54

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The group of self-homotopy equivalences of the m-fold smash product of a space2017

    • Author(s)
      H. Kihara, K. Maruyama and N. Oda
    • Journal Title

      Topology and its Applications

      Volume: 217 Pages: 70-80

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Characterizations of functions between sets with operations II2018

    • Author(s)
      中岡史絵、小田信行
    • Organizer
      第23回 位相空間論とその応用
    • Related Report
      2018 Annual Research Report
  • [Presentation] Self-closeness numbers of spaces in cofibrations and fibrations2018

    • Author(s)
      小田信行、 山口俊博
    • Organizer
      第23回 位相空間論とその応用
    • Related Report
      2018 Annual Research Report
  • [Presentation] コンヴィニエントな位相空間の圏について2018

    • Author(s)
      平嶋康昌,小田信行
    • Organizer
      2018年度ホモトピー論シンポジウム
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2015-10-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi