• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Searching for integrable systems over finite fields

Research Project

Project/Area Number 15K04904
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionFuture University-Hakodate

Principal Investigator

Yura Fumitaka  公立はこだて未来大学, システム情報科学部, 教授 (90404805)

Project Period (FY) 2015-10-21 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordssoliton / finite field / 離散可積分系 / 楕円曲線 / 楕円数列
Outline of Final Research Achievements

In this research, I have mainly constructed the dynamical systems related to the lattice model that take a value on finite fields. The solitonic systems obtained there over finite fields conserves solitary waves, and have polynomial representations, which are novel dynamical systems. The properties of the general solutions of the elliptic sequences and the Somos sequences as a special case are also considered through Hankel determinants. The elliptic sequence is equivalent to the sequence of points on an elliptic curve, and fundamental object for the elliptic curve cryptography and the algebraic geometry. Furthermore, a basic application to cryptography of algebraic systems connected with dynamical systems that support a soliton equation over finite fields are considered.

Academic Significance and Societal Importance of the Research Achievements

まず、有限体上において孤立波を保存するようなソリトン系は従来得られていなかったと思われるため、新規な力学系である。また多項式表示を持つ点は、従来の実数あるいは複素数上の可積分系には見られない大きな特徴であり、離散的な系との比較は可積分系に対する新しい視点となりうる。また、ここに現れる枠組みは平方剰余と関係することから、力学系として新規なモデルを与える可能性だけではなく、代数系を基にした暗号理論への応用が今後期待される。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (4 results)

All 2018 2016 2015

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (1 results)

  • [Journal Article] 血管新生の数理モデル2016

    • Author(s)
      間田潤, 松家敬介, 由良文孝, 栗原裕基, 時弘哲治
    • Journal Title

      日本応用数理学会論文誌

      Volume: 26(1) Pages: 105-123

    • NAID

      110010042558

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 楕円曲線とHankel行列式2015

    • Author(s)
      由良文孝
    • Journal Title

      九州大学応用力学研究所講究録

      Volume: 26AO-S2 Pages: 163-169

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hankel determinant solution for elliptic sequence2015

    • Author(s)
      Fumitaka Yura
    • Journal Title

      Linear Algebra and Its Applications

      Volume: 484 Pages: 27-45

    • DOI

      10.1016/j.laa.2015.06.016

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 大域的2次元セルオートマトンのある拡張について2018

    • Author(s)
      由良 文孝
    • Organizer
      日本応用数理学会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2015-10-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi