• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the Teichmuller spaces of fractal structures

Research Project

Project/Area Number 15K04925
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionNara Women's University

Principal Investigator

Taniguchi Masahiko  奈良女子大学, 名誉教授 (50108974)

Co-Investigator(Renkei-kenkyūsha) Fujimura MASAYO  防衛大学校, 総合教育学群, 准教授 (00531758)
Matsuzaki KATSUHIKO  早稲田大学, 教育・総合科学学術院, 教授 (80222298)
Fujikawa EGE  千葉大学, 大学院理学研究科, 准教授 (80433788)
Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsタイヒミュラー空間 / フラクタル集合 / 擬等角写像 / フラクタル構造 / 擬等角変形
Outline of Final Research Achievements

We formulate the concept of the Teichmuller space of a fractal structure and establish the fundamental theory on it. This is one of the main purposes of this research project. More precisely, we introduce the Teichmuller space of a countable set of points associated with the fractal structure on a general Riemann surface. Furthermore, we show that such a space admits a natural complex analytic structure if the fractal structure possesses standard bounded geometry.
The second purpose of this research project is to introduce geometric global coordinates for such a Teichmuller space. On this point, for several important cases such as the iterated function systems by Mobius transformations, Kleinian group actions, and infinitely generated Koebe group actions, we introduce natural geometric global coordinates on the Teichmuller space of the corresponding fractal structure, and obtain a global representation of it.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2018 2017 2016 2015

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 2 results,  Acknowledgement Compliant: 2 results) Book (1 results)

  • [Journal Article] Koebe spaces of infinite type2018

    • Author(s)
      Masahiko Taniguchi
    • Journal Title

      Computational Methods and Function Theory

      Volume: 18 Issue: 3 Pages: 537-544

    • DOI

      10.1007/s40315-018-0235-5

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The Teichmuller space of a countable set of points on a Riemann surface2017

    • Author(s)
      Ege Fujikawa and Masahiko Taniguchi
    • Journal Title

      Conformal Geometry and Dynamics

      Volume: 21 Issue: 2 Pages: 64-77

    • DOI

      10.1090/ecgd/301

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Teichmuller space of a countable set of points on the Riemann sphere2017

    • Author(s)
      Masahiko Taniguchi
    • Journal Title

      Filomat

      Volume: 31 Issue: 1 Pages: 45-51

    • DOI

      10.2298/fil1701045t

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotically unweighted shifts, hypercyclicity, and linear chaos2016

    • Author(s)
      Ayuko Natsume and Masahiko Taniguchi
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 39 Issue: 2 Pages: 527-536

    • DOI

      10.3836/tjm/1484903135

    • Related Report
      2016 Research-status Report 2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Rational functions with nodes2015

    • Author(s)
      Masahiko Taniguchi and Masayo Fujimura
    • Journal Title

      Journal of Analysis

      Volume: Special Volume Pages: 85-100

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Book] 朝倉 数学辞典2016

    • Author(s)
      川又雄二郎・坪井俊・楠岡成雄・新井仁之 編、谷口雅彦(分担執筆)
    • Total Pages
      776
    • Publisher
      朝倉書店
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi