• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Morse-Floer theory for nonlinear Dirac equations

Research Project

Project/Area Number 15K04947
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionHitotsubashi University (2017-2019)
Tokyo Institute of Technology (2015-2016)

Principal Investigator

Isobe Takeshi  一橋大学, 大学院経済学研究科, 教授 (10262255)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsモース理論 / モースホモロジー / ディラック方程式 / ディラック・調和写像 / ディラック・測地線 / モース・フレアー理論 / 臨界点理論 / モース・フレアーホモロジー / ルレイ・セールスペクトル系列 / フレアーホモロジー
Outline of Final Research Achievements

I studied nonlinear Dirac type equations defined on manifolds. In particular, I investigated the following questions: i) Do equations have any solutions? ii) How the global structure of the space of solutions depends on the geometrical structure of the manifolds and the nonlinearity of the equations. As for i), I proved the existence theorems of nonlinear Dirac equations, Dirac-geodesics and Dirac-harmonic maps into flat tori. As for ii), I have constructed and calculated Morse homologies for nonlinear Dirac equations and clarified how the global structure of the set of solutions depends on the nonlinear terms.

Academic Significance and Societal Importance of the Research Achievements

非線形ディラック方程式は幾何学や物理学において基本的な役割を果たしてきている重要な方程式である。本研究では、コンパクト多様体上の非線形ディラック方程式の解空間の大域的な構造を研究した。特に、方程式に対応する変分問題のモースホモロジーを定義し、ホモロジーの計算を実行した。主結果は、方程式のモースホモロジーは非線形項のホモトピー不変量として決まるというもので、これにより解空間の大域的な定性的・定量的な性質をホモロジーという代数的な量で捉えることができるようになった。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (15 results)

All 2020 2019 2017 2016 2015 Other

All Int'l Joint Research (5 results) Journal Article (5 results) (of which Peer Reviewed: 5 results,  Acknowledgement Compliant: 1 results) Presentation (2 results) (of which Invited: 2 results) Remarks (3 results)

  • [Int'l Joint Research] American University of Was AI Chaimah(アラブ首長国連邦)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] American University of Was AI Khaimah(アラブ首長国連邦)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] American University of Was AI Khaimah(United Arab Emirates)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] American University of Ras Al Khaimah(United Arab Emirates)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] American University of Ras Al Khaimah(United Arab Emirates)

    • Related Report
      2015 Research-status Report
  • [Journal Article] Morse homology for asymptotically linear Dirac equations on compact manifolds2020

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Journal of Differential Equations

      Volume: - Issue: 6 Pages: 5062-5109

    • DOI

      10.1016/j.jde.2020.04.007

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the multiple existence of superquadratic Dirac-harmonic maps into flat tori2019

    • Author(s)
      Takeshi isobe
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 58 Issue: 4

    • DOI

      10.1007/s00526-019-1578-0

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Morse-Floer theory for superquadratic Dirac equations, II: construction and computation of Morse-Floer homology2017

    • Author(s)
      Isobe Takeshi
    • Journal Title

      Journal of fixed point theory and applications

      Volume: 19 Issue: 2 Pages: 1365-1425

    • DOI

      10.1007/s11784-016-0392-y

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Morse-Flier theory for super quadratic Dirac equations, I: relative Morse indices and compactness2016

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Journal of Fixed Point Theory and Applications

      Volume: - Issue: 2 Pages: 1315-1363

    • DOI

      10.1007/s11784-016-0391-z

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Spinorial Yamabe type equations on S^3 via Conley Index2015

    • Author(s)
      Takeshi, Isobe
    • Journal Title

      Advanced Nonlinear Studies

      Volume: 15-1 Issue: 1 Pages: 39-60

    • DOI

      10.1515/ans-2015-0103

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Perturbed Dirac-harmonic maps into flat tori: existence and multiplicity2019

    • Author(s)
      磯部健志
    • Organizer
      楕円型・放物型方程式研究集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 非線形ディラック方程式に対するモース・フレアーホモロジー2017

    • Author(s)
      磯部 健志
    • Organizer
      微分方程式の総合的研究
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] researchmap(磯部健志)

    • URL

      https://researchmap.jp/7000019461

    • Related Report
      2019 Annual Research Report
  • [Remarks] 一橋大学研究者情報(磯部健志)

    • URL

      https://hri.ad.hit-u.ac.jp/html/100000509_profile_ja.html

    • Related Report
      2018 Research-status Report
  • [Remarks]

    • Related Report
      2017 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi