Project/Area Number |
15K04974
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | University of Tsukuba |
Principal Investigator |
Miao Ying 筑波大学, システム情報系, 教授 (10302382)
|
Co-Investigator(Kenkyū-buntansha) |
藤原 良叔 筑波大学, システム情報系(名誉教授), 名誉教授 (30165443)
|
Project Period (FY) |
2015-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | デジタル指紋 / グループ検査 / 組合せ構造 / アルゴリズム / 構成法 / 最適 / ゼロ差均衡関数 / traceability scheme / frameproof code / fingerprinting / encryption / zero-difference / マルチメディアIPP符号 / 分離可能符号 / SUT 族 / frameproof 符号 / マルチメディア IPP 符号 |
Outline of Final Research Achievements |
We have investigated properties and construction of combinatorial structures common to digital fingerprinting and group testing, and developed tracing/ identification algorithms based on these structures. We have introduced strongly separable codes and multimedia IPP codes, and developed tracing algorithms based on these codes. We have derived tight upper and lower bounds on the sizes of separable codes, frameproof codes, multimedia IPP codes, and traceability schemes. We have constructed infinite series of perfect hash families, optimal separable codes, optimal strongly separable codes, and optimal multimedial IPP codes. We have used generalized cyclotomy to construct infinite series of zero-difference balanced functions, and then constructed many sequences used in communication.
|