Project/Area Number |
15K11990
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Mathematical informatics
|
Research Institution | Kobe University |
Principal Investigator |
Mori Kohei 神戸大学, システム情報学研究科, 助教 (70359868)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
|
Keywords | 01二次計画 / 大域最適化 / 組合せ最適化 / 緩和問題 / 最適制御 / スケジューリング / 数理計画 / 浮動小数点演算 / MAX-CUT / Lyapunov関数 / スマートハウス / 最適化アルゴリズム |
Outline of Final Research Achievements |
Boolean quadratic programming is a basic and very simple computational problem. However, it is difficult to solve in moderate time even when the size is normal. We proposed and analyzed a tractable and strange procedure that can be implemented without multiplications and decimals.Then we examined the details for writing the procedure as a computer program.It is shown that the procedure is extremely efficient when the size of instance is small.We also proved some of properties of the generalized mathematical programming problems. The viewpoint and knowledge obtained by the research lead us to applications such as control of dynamical systems and making time schedule tables.
|
Academic Significance and Societal Importance of the Research Achievements |
ハードとソフトの両面の豊富な資源の利用を念頭に置くことなく,極めて基本的な演算である加減算の使い方の工夫や計算順序の交換により難しい計算(最適化)問題を高速に解く試みは,この分野の黎明期を除いてほぼ行われていない.そのため,この問題設定の下で解析的(数学的)な性質を示したことは,研究成果としての希少性の意義だけではなく,多くの場合に間接的であろうが,広い応用分野における計算の効率化をもたらしうる.実際に,本来の研究対象を一般化した数理計画問題やスケジューリングにおける応用の検討も行えている.
|