• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of teaching method for linear algebra based on cognitive science

Research Project

Project/Area Number 15K12392
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Science education
Research InstitutionOsaka Prefecture University

Principal Investigator

Kawazoe Mitsuru  大阪府立大学, 高等教育推進機構, 教授 (10295735)

Co-Investigator(Kenkyū-buntansha) 岡本 真彦  大阪府立大学, 人間社会システム科学研究科, 教授 (40254445)
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords数学教育 / 認知科学 / 線形代数 / 一次独立 / 生成される空間 / 高等教育
Outline of Final Research Achievements

In the previous research, it has been believed that students have sufficient intuitive understanding on geometric vectors. However, our study revealed that there are many learners who have difficulty in imagining the space generated by three vectors, and that those learners have difficulty in recognizing that four spatial vectors are linearly dependent. Based on the result of the qualitative analysis, we hypothesized that the cognitive process in imagining a space generated by three vectors can be captured by "Basic Metaphor of Infinity" introduced by Lakoff and Nunez, and tried to improve students' understanding by helping students' geometric way of thinking. We obtained results suggesting that geometrical understanding is related to deep understanding of linearly independence, but we could not confirm the effect of the instruction which is aimed to help students' geometric way of thinking.

Academic Significance and Societal Importance of the Research Achievements

本研究は,従来研究が3次元空間までの概念は直観的に理解可能と暗黙のうちに前提していたことについて,3次元空間での幾何ベクトルに関しても直観的理解には限界があることを明らかにした。本研究の成果は,3次元までの直観的理解を前提とした指導がこれまで十分な効果を上げられなかったことの要因の説明を可能にする。この意味で,本研究の成果は,今後の線形代数の教育研究の基礎となりうるものである。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (4 results)

All 2018 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Students' Conception of Spanned Space and Its Relation to Conception of Linear Independence2018

    • Author(s)
      Mitsuru Kawazoe
    • Journal Title

      Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education

      Volume: 5 Pages: 82-82

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 学習者の心的表象が空間ベクトルの一次独立性の理解に及ぼす影響2016

    • Author(s)
      川添充,岡本真彦
    • Journal Title

      日本数学教育学会誌数学教育学論究臨時増刊

      Volume: 98 Pages: 17-24

    • NAID

      130007938189

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Students' Conception of Spanned Space and Its Relation to Conception of Linear Independence2018

    • Author(s)
      Mitsuru Kawazoe
    • Organizer
      The 42nd Conference of the International Group for the Psychology of Mathematics Education (PME42)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 学習者の心的表象が空間ベクトルの一次独立性の理解に及ぼす影響2016

    • Author(s)
      川添充,岡本真彦
    • Organizer
      日本数学教育学会第49回秋期研究大会
    • Place of Presentation
      弘前大学
    • Year and Date
      2016-10-29
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi