• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Fast Image Reconstruction Method based on Machine Learning

Research Project

Project/Area Number 15K15214
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Medical Physics and Radiological Technology
Research InstitutionHiroshima International University

Principal Investigator

Okura Yasuhiko  広島国際大学, 保健医療学部, 教授 (80369769)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2015: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Keywords画像再構成 / 機械学習 / ニューラルネットワーク / 医学物理 / 人工知能 / 医用画像処理 / シミュレーション
Outline of Final Research Achievements

In medical image diagnostic system such as X-ray CT, PET, which give important inspection in medical situation, an image reconstruction method to obtain useful information for diagnosis by constructing images as tomograms from projection data of the patients is a very important technology. However, especially in recent X-ray CT and PET, there are many information to be obtained, so time to calculations necessary for image reconstruction is too long even if newer computer is used for calculation. Therefore, it takes more waiting time to calculate is generated in clinical practice.On the other hand, it is known that the "large-scale neural network" has a relatively light computation load for "inference processing" of obtaining output by inputting data.
In this study, we clarified that high-speed image reconstruction in medical use can be realized by using large-scale neural network.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (7 results)

All 2017

All Journal Article (2 results) Presentation (5 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] 機械学習を用いた冠動脈DSAに関する研究2017

    • Author(s)
      山本めぐみ, 大倉保彦
    • Journal Title

      日本医用画像工学会

      Volume: - Pages: 249-252

    • Related Report
      2017 Annual Research Report
  • [Journal Article] 対向データを利用した補間法によるSPECT再構成法の開発2017

    • Author(s)
      山口雄基, 大倉保彦, 山本めぐみ
    • Journal Title

      日本医用画像工学会

      Volume: - Pages: 365-371

    • Related Report
      2017 Annual Research Report
  • [Presentation] Advanced method to reconstruct SPECT image from few number of projection data2017

    • Author(s)
      Yuki Yamaguchi, Yasuhiko Okrua, Megumi Yamamoto
    • Organizer
      EANM'17 - Annual Congress of the European Association of Nuclear Medicine
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 投影データの短時間収集における機械学習を用いたSPECT画像のノイズ低減に関する研究2017

    • Author(s)
      村上弘典, 藤原泰裕, 大倉保彦, 山本めぐみ
    • Organizer
      日本放射線技術学会第73回総会学術大会
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いたノイズ低減処理の有用性2017

    • Author(s)
      藤原泰裕, 村上弘典, 山本めぐみ, 大倉保彦
    • Organizer
      日本放射線技術学会第73回総会学術大会
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いた冠動脈DSA法の開発2017

    • Author(s)
      山本めぐみ, 大倉保彦
    • Organizer
      第36回日本医用画像工学会大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 投影データ補間法を用いたSPECT再構成像の画質評価2017

    • Author(s)
      山口雄基, 大倉保彦, 山本めぐみ
    • Organizer
      日本放射線技術学会第73回総会学術大会
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi