• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Model Selection for Tensor Factorization and its Applications for Big Data Analysis

Research Project

Project/Area Number 15K16067
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Soft computing
Research InstitutionNagoya Institute of Technology

Principal Investigator

Yokota Tatsuya  名古屋工業大学, 工学(系)研究科(研究院), 助教 (80733964)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsテンソル分解 / モデル選択 / 情報量基準 / テンソル補完 / テンソル核ノルム / テンソル総変動 / テンソル因子分解 / 非負行列分解 / 凸最適化 / 主双対分離 / 核ノルム / Total Variation / PET画像再構成 / テンソル最適化 / 全変動 / 近接分離 / 多重線形ランク / 平滑制約 / 低ランク
Outline of Final Research Achievements

Tensor is a name of multi-dimensional array including vectors and matrices. For analyzing tensors, there are many approaches such as tensor factorization and tensor networks. However, model selection (i.e., rank estimation) is a critical issue of tensor factorization and its applications. In this study, we tackled the problem of model selection in tensor analysis while developing many algorithms for tensor rank estimation, noise reduction, completion, and super-resolution. Totally, we published four journal papers including arXiv and fourteens conference presentations including domestic and international conferences. It includes two highly impact journal papers published in the IEEE Transactions on Signal Processing, and two highly impact international conference papers accepted for the IEEE Conference on Computer Vision and Pattern Recognition.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (15 results)

All 2018 2017 2016 2015 Other

All Journal Article (5 results) (of which Peer Reviewed: 3 results,  Open Access: 5 results,  Acknowledgement Compliant: 3 results) Presentation (7 results) (of which Int'l Joint Research: 7 results) Remarks (3 results)

  • [Journal Article] Simultaneous Tensor Completion and Denoising by Noise Inequality Constrained Convex Optimization2018

    • Author(s)
      Tatsuya Yokota、Hontani Hidekata
    • Journal Title

      arXiv

      Volume: 1801.03299 Pages: 1-1

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] Parametric PET Image Reconstruction via Regional Spatial Bases and Pharmacokinetic Time Activity Model2017

    • Author(s)
      Kawamura N, Yokota T, Hontani H, Sakata M, Kimura Y
    • Journal Title

      Entropy

      Volume: 19(11) Issue: 11 Pages: 629-629

    • DOI

      10.3390/e19110629

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Robust Multilinear Tensor Rank Estimation Using Higher Order Singular Value Decomposition and Information Criteria2017

    • Author(s)
      Tatsuya Yokota, Namgil Lee, and Andrzej Cichocki
    • Journal Title

      IEEE Transactions on Signal Processing

      Volume: Vol. 65, No. 5 Issue: 5 Pages: 1196-1206

    • DOI

      10.1109/tsp.2016.2620965

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Smooth PARAFAC Decomposition for Tensor Completion2016

    • Author(s)
      Tatsuya Yokota, Qibin Zhao, Andrzej Cichocki
    • Journal Title

      IEEE Transactions on Signal Processing

      Volume: 64 Issue: 20 Pages: 5423-5436

    • DOI

      10.1109/tsp.2016.2586759

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Smooth PARAFAC Decomposition for Tensor Completion2015

    • Author(s)
      Tatsuya Yokota, Qibin Zhao, and Andrzej Cichocki
    • Journal Title

      arXiv

      Volume: 1505.06611 Pages: 1-13

    • Related Report
      2015 Research-status Report
    • Open Access / Acknowledgement Compliant
  • [Presentation] Missing Slice Recovery for Tensors Using a Low-rank Model in Embedded Space2018

    • Author(s)
      Tatsuya Yokota, Hidekata Hontani
    • Organizer
      IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] An Efficient Method for Adapting Step-size Parameters of Primal-dual Hybrid Gradient Method in Application to Total Variation Regularization2017

    • Author(s)
      Tatsuya Yokota, Hidekata Hontani
    • Organizer
      APSIPA-ASC 2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Robust PET Image Reconstruction using Constrained Non-negative Matrix Factorization2017

    • Author(s)
      K. Kawai, J. Yamada, H. Hontani, T. Yokota, M. Sakata, and Y. Kimura
    • Organizer
      APSIPA-ASC 2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Simultaneous Visual Data Completion and Denoising based on Tensor Rank and Total Variation Minimization and its Primal-dual Splitting Algorithm2017

    • Author(s)
      Tatsuya Yokota, Hidekata Hontani
    • Organizer
      IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Tensor Completion via Functional Smooth Component Deflation2016

    • Author(s)
      Tatsuya Yokota
    • Organizer
      41st International Conference on Acoustics, Speech and Signal Processing
    • Place of Presentation
      Shanghai
    • Year and Date
      2016-03-20
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] A fast automatic rank determination algorithm for noisy low-rank matrix completion2015

    • Author(s)
      Tatsuya Yokota
    • Organizer
      Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
    • Place of Presentation
      Hong-Kong
    • Year and Date
      2015-12-16
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Smooth PARAFAC Decomposition for Tensor Completion2015

    • Author(s)
      Tatsuya Yokota
    • Organizer
      Low-rank Optimization and Applications
    • Place of Presentation
      Bonn, Germany
    • Year and Date
      2015-06-08
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Remarks] Projects and Softwares (MATLAB)

    • URL

      https://sites.google.com/site/yokotatsuya/home/software

    • Related Report
      2017 Annual Research Report
  • [Remarks] 自作ホームページ

    • URL

      https://sites.google.com/site/yokotatsuya/home/publication

    • Related Report
      2016 Research-status Report
  • [Remarks] 名古屋工業大学研究者データベース

    • URL

      http://researcher.nitech.ac.jp/html/100000541_ja.html

    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi