• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of communication aid technology for speech disorder using speech recognition from electromyographic signals derived with multi-electrode array

Research Project

Project/Area Number 15K16395
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Rehabilitation science/Welfare engineering
Research InstitutionNara Institute of Science and Technology

Principal Investigator

Kubo Takatomi  奈良先端科学技術大学院大学, 情報科学研究科, 特任准教授 (20631550)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2017: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords時系列分節化 / ノンパラメトリックベイズ法 / 深層学習 / 表面筋電位信号 / 分節化 / 多点表面筋電位信号 / 機会学習 / 発話
Outline of Final Research Achievements

When deep learning is applied to uncommon data like surface electromyographic signals during a speech, it is necessary to determine parameters, e.g., the number of layers in the network, the number of nodes in each layer, etc. appropriately. In 2015, we developed a method to determine them depending on data, and reported it in a domestic conference, international conference, and a journal. In 2017, we developed a method that can segment time-series data with the unknown number of states by using two Bayesian non-parametric methods, Beta process autoregressive hidden Markov model and Hierarchical Pitman- Yor language model. We reported it in a domestic conference and an international conference. We received a recommendation to a special issue of a journal for our presentation in the domestic conference.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (4 results)

All 2017 2015

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Roles of pre-training in deep neural networks from information theoretical perspective2017

    • Author(s)
      Yasutaka Furusho, Takatomi Kubo, Kazushi Ikeda
    • Journal Title

      Neurocomputing

      Volume: 248 Pages: 76-79

    • DOI

      10.1016/j.neucom.2016.12.083

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Double Articulation Approach for Segmentation of Human Interaction using BP-AR-HMM and NPYLM2017

    • Author(s)
      Jeric Briones, Takatomi Kubo, Kazushi Ikeda
    • Organizer
      The Thirty-first Annual Conference on Neural Information Processing Systems (workshop "ADVANCES IN MODELING AND LEARNING INTERACTIONS FROM COMPLEX DATA")
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ディープニューラルネットワークの入力符号化能力の情報理論的評価2015

    • Author(s)
      古庄泰隆, 久保孝富, 池田和司
    • Organizer
      計測自動制御学会 システム・情報部門 学術講演会 2015
    • Place of Presentation
      北海道函館市
    • Year and Date
      2015-11-18
    • Related Report
      2015 Research-status Report
  • [Presentation] Information Theoretical Analysis of Deep Learning Representations2015

    • Author(s)
      Yasutaka Furusho, Takatomi Kubo, Kazushi Ikeda
    • Organizer
      the 22nd International Conference on Neural Information Processing
    • Place of Presentation
      トルコ イスタンブール
    • Year and Date
      2015-11-09
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi