New perspectives on the singularity theory
Project/Area Number |
15K17510
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Algebra
|
Research Institution | Tohoku University (2018) Osaka University (2015-2017) |
Principal Investigator |
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 特異点 / マッカイ対応 / 整数論 / 正標数 / 食い違い係数 / モジュライ空間 / モチヴィック・セール不変量 / 乗数イデアル / 野性マッカイ対応 / ガロア拡大 |
Outline of Final Research Achievements |
We have obtained new perspectives and theorems about singularities of spaces in positive or mixed characteristics and about roles played by singularities in the number theory. More specifically, we have obtained: (1) perspectives on relation between two conjectures in the number theory, Manin's conjecture and Malle's conjecture, and the role that singularities play there, (2) understanding the structure of wild quotient singularities thanks to development of the wild McKay correspondence, (3) formulation of Vojta's conjecture form the viewpoint of singularities.
|
Academic Significance and Societal Importance of the Research Achievements |
整数論の代数幾何を用いた研究は数論幾何という大きな分野となっているが、特異点の役割は軽視されてきたように感じられる。本研究により、特異点を通して整数論を見たり、逆に整数論を特異点研究に応用するなどの新しい知見や手法が得られた。また、本研究には一部、数理物理からのアイデアも応用されており、複数分野の境界領域における発展ということができる。
|
Report
(5 results)
Research Products
(16 results)