• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on the structure of complexes of modules

Research Project

Project/Area Number 15K17514
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionFukuoka University of Education

Principal Investigator

OKAZAKI Ryota  福岡教育大学, 教育学部, 准教授 (20624109)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsアフィン有向マトロイド / 有界複体 / 極小次数付き自由分解 / 次数付き自由分解 / 有限次数付き自由分解 / 有向マトロイド / 組合せ論的可換代数
Outline of Final Research Achievements

This research has revealed that if the bounded complex X of an affine oriented matroid M is Cohen-Macaulay, then X and the simplicial complex Δ associated with the affine oriented matroid ideal of M are ``homologically'' closed balls. In addition, I have discovered a ``direct'' way to construct a graded free resolution of a finitely generated graded module over a polynomial ring over a field.

Academic Significance and Societal Importance of the Research Achievements

アフィン有向マトロイドに関する成果は,有界複体 X がコーエン=マコーレーならば X は閉球体であることを窺わせ,X. Dong 氏により肯定的に解決された Zaslavsky 予想の主張がより広いクラスでも成立することを示唆するものである.
加群 M の自由分解は,M の代数的性質を調べる為の重要な概念であり,本研究で得られた自由分解の構成法は多項式環上の次数付き加群に関する研究への寄与が期待できる.

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2018 2016 2015

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results)

  • [Journal Article] The Cohen-Macaulayness of the bounded complex of an affine oriented matroid2018

    • Author(s)
      Okazaki Ryota、Yanagawa Kohji
    • Journal Title

      Journal of Combinatorial Theory, Series A

      Volume: 157 Pages: 1-27

    • DOI

      10.1016/j.jcta.2018.01.004

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] The bounded complex of an affine oriented matroid and its Cohen-Macaulayness2016

    • Author(s)
      岡崎亮太
    • Organizer
      International Conference and 8th Japan-Vietnam Joint Seminar on Commutative Algebra
    • Place of Presentation
      VIASM's Villa, Ha Long, Vietnam
    • Year and Date
      2016-03-23
    • Related Report
      2015 Research-status Report
  • [Presentation] 多項式環上の Z-次数付き有限生成加群の Z-次数付き自由分解の構成について2016

    • Author(s)
      岡崎亮太
    • Organizer
      日本数学会 2016 年度 秋季総合分科会
    • Place of Presentation
      関西大学千里山キャンパス
    • Related Report
      2016 Research-status Report
  • [Presentation] A canonical construction of Z-graded finite free resolutions of finitely generated Z-graded modules over a polynomial ring2016

    • Author(s)
      岡崎亮太
    • Organizer
      第 38 回可換環論シンポジウム
    • Place of Presentation
      IPC 生産性国際交流センター
    • Related Report
      2016 Research-status Report
  • [Presentation] The Cohen-Macaulayness of the bounded complex of an affine oriented matroid2015

    • Author(s)
      柳川浩二,岡崎亮太
    • Organizer
      第 37 回可換環論シンポジウム
    • Place of Presentation
      倉敷シーサイドホテル(岡山県倉敷市)
    • Year and Date
      2015-11-18
    • Related Report
      2015 Research-status Report
  • [Presentation] アフィン有向マトロイドの bounded complex の Cohen-Macaulay 性とマトロイド・イデアルの Cohen-Macaulay 性2015

    • Author(s)
      岡崎亮太,柳川浩二
    • Organizer
      日本数学会・2015年度秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市)
    • Year and Date
      2015-09-13
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi