• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study of geometry of higher order partial differential equations equipped with singularities

Research Project

Project/Area Number 15K17543
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

Shibuya Kazuhiro  広島大学, 理学研究科, 准教授 (00569832)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords微分式系 / 外微分式系 / 田中理論 / 微分方程式の幾何学 / フィンスラー幾何学 / 微分幾何学 / 微分形式
Outline of Final Research Achievements

A subbundle of the tangent bundle on a manifold is called a differential system.
The theory of differential systems is known as a method to study partial differential equations, geometrically. Moreover, the theory of exterior differential systems which is a generalization of differential systems is also useful for the geometrical study of partial differential equations. On the other hands, partial differential equations are used to describe natural phenomena, therefore to study partial differential equations is important. In this situation, we apply the theory of differential systems and exterior differential systems to partial differential equations, especially, higher order or multi unknown functions partial differential equations. we clarify basic and fundamental properties for the equations.

Academic Significance and Societal Importance of the Research Achievements

微分方程式は自然現象、社会現象を科学的に記述、研究するために極めて重要な研究対象であり、また、個別の微分方程式ではなく、統一的に微分方程式を扱い、その共通の性質を明らかにすることは意義の有ることである。一方で、微分方程式の持つ幾何学的性質を明らかにすること、また逆に幾何学的に重要な性質を持つ対象を微分方程式から構成することは微分幾何学の視点からも意義のあることである。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (18 results)

All 2019 2018 2017 2016 2015

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 2 results,  Acknowledgement Compliant: 2 results) Presentation (13 results) (of which Int'l Joint Research: 5 results,  Invited: 13 results) Book (1 results)

  • [Journal Article] The geometry of a positively curved Zoll surface of revolution2019

    • Author(s)
      K.Kiyohara, Sorin V. Sabau, K.Shibuya
    • Journal Title

      International J. Geometric Methods in Modern Physics

      Volume: 16 Issue: supp02 Pages: 1-29

    • DOI

      10.1142/s0219887819410032

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Geodesics on strong Kropina manifolds2017

    • Author(s)
      Sabau, Sorin V.; Shibuya, Kazuhiro; Yoshikawa, Ryozo
    • Journal Title

      Eur. J. Math.

      Volume: 3 no.4 Pages: 1172-1224

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Type-changing PDE and singularities of Monge characteristic systems2017

    • Author(s)
      Noda, Takahiro and Shibuya, Kazuhiro
    • Journal Title

      Advanced Studies in Pure Math.

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] A variational problem for curves on Riemann-Finsler surfaces2016

    • Author(s)
      Sabau, S.V. and Shibuya, K.
    • Journal Title

      J. Aust. Math. Soc.

      Volume: 印刷中

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] 接触変換によるモンジュアンペール方程式のクラスの不変性2019

    • Author(s)
      澁谷一博
    • Organizer
      北大幾何学コロキウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 接触変換で不変な微分方程式のクラスについて2018

    • Author(s)
      澁谷一博
    • Organizer
      合宿セミナー 2018 in 福山
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 微分方程式の幾何学と分類問題I,II2017

    • Author(s)
      澁谷 一博
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Place of Presentation
      金沢大学サテライトプラザ
    • Year and Date
      2017-01-17
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Geometry of PDE and classification problems2017

    • Author(s)
      Kazuhiro Shibuya
    • Organizer
      Capital Normal University-Hiroshima University Joint Conference on Mathematics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Geometry of 2nd order PDE and contact transformations2017

    • Author(s)
      Kazuhiro Shibuya
    • Organizer
      2017 Chongqing Workshop on Differential Geometry
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] f-Gordon方程式のダルブー可積分性とその周辺2017

    • Author(s)
      澁谷一博
    • Organizer
      山口佳三先生退職記念研究集会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A classification problem for 3rd order PDEs via differential systems2016

    • Author(s)
      Kazuhiro Shibuya
    • Organizer
      Geometry Seminar in Northeast Normal University
    • Place of Presentation
      Northeast Normal University, China
    • Year and Date
      2016-12-17
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A classification problem for 3rd order PDEs via differential systems2016

    • Author(s)
      Kazuhiro Shibuya
    • Organizer
      The 51-th Symposium on Finsler Geometry
    • Place of Presentation
      Kagosihima
    • Year and Date
      2016-11-19
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A classification problem for 3rd order PDEs via differential systems2016

    • Author(s)
      Kazuhiro Shibuya
    • Organizer
      The second China-Japan geometry conference
    • Place of Presentation
      Fuzhou, China
    • Year and Date
      2016-09-11
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A variational problem for curves on Finsler surfaces2016

    • Author(s)
      澁谷一博
    • Organizer
      淡路島幾何学研究集会2016
    • Place of Presentation
      国民宿舎慶野松原荘
    • Year and Date
      2016-01-23
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] A variational problem for curves on Finsler surfaces2015

    • Author(s)
      澁谷一博
    • Organizer
      福岡幾何学研究集会
    • Place of Presentation
      福岡大学セミナーハウス
    • Year and Date
      2015-10-31
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] カルタン-ケーラーの定理とその応用1,22015

    • Author(s)
      澁谷一博
    • Organizer
      数理物理・幾何ミニワークショップ
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2015-08-23
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] 3階偏微分方程式の幾何学へ向けて2015

    • Author(s)
      澁谷一博
    • Organizer
      福岡大学微分幾何セミナー
    • Place of Presentation
      福岡大学
    • Year and Date
      2015-07-02
    • Related Report
      2015 Research-status Report
    • Invited
  • [Book] 基礎線形代数 第二版2019

    • Author(s)
      阿部誠,本田竜広,澁谷一博
    • Total Pages
      203
    • Publisher
      学術図書出版社
    • Related Report
      2018 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2022-11-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi