• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Calculus of variations centered around exponentially harmonic maps

Research Project

Project/Area Number 15K17546
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionTokyo University of Science

Principal Investigator

Omori Toshiaki  東京理科大学, 理工学部数学科, 助教 (20638225)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords指数調和写像 / 調和写像 / 離散曲面 / グラフスペクトル / 同変写像 / Liouville性 / 指数調和写像流 / 球面ホモトピー群
Outline of Final Research Achievements

Several existence theorems for exponentially harmonic maps are obtained. More precisely, an existence theorem for exponentially harmonic maps in the case that the source manifold is noncompact, and a Liouville-type theorem is also obtained for exponentially harmonic maps with bounded energy whose target has nonpositive curvature. The existence of a time-global solution to a time evolutional equation for exponentially harmonic maps into nonpositively curved manifolds has been proved. Moreover, the existence of a kind of equivariant exponentially harmonic maps between spheres has been proved under without any conditions.
Also, from a viewpoint of the area of material science, some realizations of graphs in the Euclidean space, a discrete surface theory for them, and a continuous limit of their subdivisions are studied. Spectral problems of the Goldberg-Coxeter subdivisions for 3- and 4-valent finite graphs are also studied.

Academic Significance and Societal Importance of the Research Achievements

本研究は,これまでのリーマン多様体間の調和写像の存在理論に対して,指数調和写像を用いるという新しい手法により,統一的な理論の理解を与えたという点において価値がある。
また,連続曲面の離散化でもなく,必ずしも面の存在を仮定しない次数3の空間グラフに対して離 散曲面論を構築した。この研究は,既存の曲面論の枠にはまらない非多面体曲面を対象にする という点で新しいものである。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (13 results)

All 2019 2018 2017 2016 2015

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 3 results,  Invited: 10 results)

  • [Journal Article] Exponentially harmonic maps of complete Riemannian manifolds2018

    • Author(s)
      Omori Toshiaki
    • Journal Title

      manuscripta mathematica

      Volume: Online ISSN 1432-1785 Issue: 1-2 Pages: 1-8

    • DOI

      10.1007/s00229-018-1084-2

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A discrete surface theory2017

    • Author(s)
      Motoko Kotani, Hisashi Naito, Toshiaki Omori
    • Journal Title

      Computer Aided Geometric Design

      Volume: 58 Pages: 24-54

    • DOI

      10.1016/j.cagd.2017.09.002

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 球面間の同変指数調和写像について2019

    • Author(s)
      大森俊明
    • Organizer
      リーマン幾何と幾何解析
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 有限グラフのGoldberg-Coxeter構成のラプラシアン固有値について2019

    • Author(s)
      大森俊明
    • Organizer
      若手数学者交流会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 指数調和写像の存在について2018

    • Author(s)
      大森俊明
    • Organizer
      第65回幾何学シンポジウム
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 次数3の空間グラフに対する離散曲面論2017

    • Author(s)
      大森俊明
    • Organizer
      離散幾何解析とその周辺2017(東京都・港区)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 完備リーマン多様体上の指数調和写像2017

    • Author(s)
      大森俊明
    • Organizer
      淡路島幾何学研究集会2018(兵庫県・南あわじ市)
    • Related Report
      2017 Research-status Report
  • [Presentation] カーボン材料に対する離散曲面論2016

    • Author(s)
      大森俊明
    • Organizer
      量子化の幾何学2016
    • Place of Presentation
      早稲田大学
    • Year and Date
      2016-12-09
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] A discrete surface theory for carbon networks2016

    • Author(s)
      大森俊明
    • Organizer
      部分多様体・湯沢2016
    • Place of Presentation
      湯沢グランドホテル
    • Year and Date
      2016-12-01
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A discrete suA discrete surface theory on 3-valent graphs embedded in the 3-dimensional Euclidean space2016

    • Author(s)
      大森俊明
    • Organizer
      The Second China-Japan Geometry Conference
    • Place of Presentation
      福建師範大学,中国
    • Year and Date
      2016-09-07
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 3次元Euclid 空間内に埋め込まれたグラフに対する離散曲面論2016

    • Author(s)
      大森俊明
    • Organizer
      第63回幾何学シンポジウム
    • Place of Presentation
      岡山大学
    • Year and Date
      2016-08-27
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] A discrete suA discrete surface theory on 3-valent graphs embedded in 3-dimensional Euclidean space2016

    • Author(s)
      大森俊明
    • Organizer
      CIRM Conference "Theorie spectrale des nouveaux materiaux"
    • Place of Presentation
      Marseille, France
    • Year and Date
      2016-04-18
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 指数調和写像流と調和写像流2015

    • Author(s)
      大森俊明
    • Organizer
      微分幾何・トポロジーセミナー
    • Place of Presentation
      慶応大学
    • Year and Date
      2015-06-08
    • Related Report
      2015 Research-status Report
    • Invited

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi