• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Exact WKB analysis for hypergeometric systems

Research Project

Project/Area Number 15K17556
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionShibaura Institute of Technology

Principal Investigator

Hirose Sampei  芝浦工業大学, デザイン工学部, 助教 (20743230)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords完全WKB解析 / 超局所解析 / 漸近解析 / 完全積分可能系 / 超幾何系 / Pearcey系 / Stokes幾何 / Stokes現象 / 合流型超幾何系 / 非遺伝性変わり点 / 仮想的変わり点 / 陪特性帯 / q-差分方程式 / 新しいStokes曲線 / Stokes曲面 / 2重変わり点 / 偏微分方程式系 / 振動積分 / 半代数的集合
Outline of Final Research Achievements

We consider hypergeometric systems from the viewpoint of exact WKB analysis, which has been developed mainly for ordinary differential equations. In particular, we investigate the relationship between hypergeometric system and its tangential system, which is higher-order ordinary differential equation obtained by restricting it. We obtain the results on virtual turning points and non-hereditary double turning points of tangential system. In addition, with non-hereditary double turning points as a trigger, we also obtain the result on virtual turning points of higher-order ordinary differential equation with double turning points.

Academic Significance and Societal Importance of the Research Achievements

微分方程式は自然現象を記述するだけでなく、様々な特殊函数を特徴付ける。このことから微分方程式の性質、特に解の無限遠での挙動など大域的性質を調べることは重要である。一方、完全WKB解析は微分方程式の解の大域的性質の考察に有効な手法である。このため、完全WKB解析の扱える範囲を広げることができれば、これまで扱えなかった自然現象の考察や特殊函数の解析などへの適用が期待できる。多変数超幾何系は基本的な多変数特殊函数を特徴付けており、さらに完全積分可能系の具体例であることから、完全WKB解析の扱える範囲を広げるために本研究の主題のひとつである多変数超幾何系を考察することは必要不可欠である。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (21 results)

All 2019 2018 2017 2016 2015 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Acknowledgement Compliant: 1 results) Presentation (15 results) (of which Int'l Joint Research: 7 results,  Invited: 8 results)

  • [Int'l Joint Research] University of Toronto(カナダ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University of Toronto(Canada)

    • Related Report
      2017 Research-status Report
  • [Journal Article] On a non-hereditary turning point of a tangential system of the Pearcey system2019

    • Author(s)
      Sampei Hirose
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Pearcey system re-examined from the viewpoint of s-virtual turning points and non-hereditary turning points2019

    • Author(s)
      Sampei Hirose, Takahiro Kawai and Yoshitsugu Takei
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Stokes geometry of perturbed tangential Pearcey systems2019

    • Author(s)
      Sampei Hirose, Takahiro Kawai, Shinji Sasaki and Yoshitsugu Takei
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the redundant and non-redundant virtual turning points for the AKT equation2016

    • Author(s)
      Sampei Hirose
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B57 Pages: 39-59

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Borel summability of WKB solutions of ODEs of Schroedinger type2019

    • Author(s)
      Sampei Hirose
    • Organizer
      Seminar in University of the Philippines Diliman
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] q-difference operators as differential operators of infinite order2018

    • Author(s)
      Sampei Hirose
    • Organizer
      Formal and analytic solutions of functional equations on the complex domain
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stokes geometry of ordinary differential equations with double turning points related to confluent hypergeometric equations of two variables2018

    • Author(s)
      Sampei Hirose
    • Organizer
      Various Problems of Algebraic Analysis -- Microlocal Analysis and Asymptotic Analysis --
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Exact WKB analysis for completely integrable systems2018

    • Author(s)
      Sampei Hirose
    • Organizer
      Geometric Structures Laboratory
    • Related Report
      2017 Research-status Report
  • [Presentation] 特異摂動の視点からのq-差分方程式について2018

    • Author(s)
      廣瀬三平
    • Organizer
      山口微分方程式セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Asymptotic analysis of q-difference equation from the viewpoint of a differential operator of WKB type2017

    • Author(s)
      Sampei Hirose
    • Organizer
      FASdiff17
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On virtual turning points originating from a non-hereditary turning point2017

    • Author(s)
      Sampei Hirose, Takahiro Kawai, Yoshitsugu Takei
    • Organizer
      Microlocal analysis and asymptotic analysis
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stokes超曲面の構造について2017

    • Author(s)
      廣瀬三平
    • Organizer
      アクセサリー・パラメーター研究会
    • Place of Presentation
      熊本大学理学部
    • Related Report
      2016 Research-status Report
  • [Presentation] Pseudo-Stokes hypersurfaceの特異点について2016

    • Author(s)
      廣瀬三平
    • Organizer
      研究集会「複素領域の微分方程式, 漸近解析とその周辺」
    • Place of Presentation
      広島大学理学部
    • Year and Date
      2016-03-09
    • Related Report
      2015 Research-status Report
  • [Presentation] On the structure of the Stokes hypersurface2016

    • Author(s)
      Sampei Hirose
    • Organizer
      Formal and Analytic Solutions of Partial Differential Equations
    • Place of Presentation
      University of Lisbon, Portugal
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] On non-hereditary turning points; particular turning points which appear in the deformation theory of ordinary differential equations2016

    • Author(s)
      Sampei Hirose
    • Organizer
      New development of microlocal analysis and singular perturbation theory
    • Place of Presentation
      Research Institute for Mathematical Sciences, Kyoto University
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the structure of the Stokes hypersurface2016

    • Author(s)
      廣瀬三平
    • Organizer
      代数解析奈良研究集会
    • Place of Presentation
      奈良女子大学理学部
    • Related Report
      2016 Research-status Report
  • [Presentation] 偏微分方程式系に対する完全WKB解析について2016

    • Author(s)
      廣瀬三平
    • Organizer
      Interaction between Pure and Applied Mathematics 2016
    • Place of Presentation
      明治大学
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] On the relationship between the BNR equation and the Pearcey system2015

    • Author(s)
      Sampei Hirose
    • Organizer
      研究集会「Analytic, Algebraic and Geometric Aspects of Differential Equations」
    • Place of Presentation
      Banach Center, Warsaw, Poland
    • Year and Date
      2015-09-15
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 完全積分可能なハミルトニアンの普遍開折とその量子化2015

    • Author(s)
      廣瀬三平
    • Organizer
      研究集会「Workshop on Accessory Parameters」
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Year and Date
      2015-06-20
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi