• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ergodic theory of number theoretic transformations toward the construction of infinite ergodic theory

Research Project

Project/Area Number 15K17559
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionJapan Women's University

Principal Investigator

Natsui Rie  日本女子大学, 理学部, 准教授 (60398633)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsエルゴード理論 / 測度論的数論 / 複素連分数変換 / ユークリッドアルゴリズム / 数論的アルゴリズム / 複素連分数 / Hurwitz連分数
Outline of Final Research Achievements

Toward the goal finding a new invariant which is captured the difference in the notion between determinism and randomness on measurable dynamical systems with infinite invariant measure, this research is focused on the randomness of number generated from number theoretic transformations. In particular, this research obtained the result about the properties of complexity for nearest integer complex continued fraction transformations over imaginary quadratic field and number theoretic algorithms over non-Archimedean field.

Academic Significance and Societal Importance of the Research Achievements

未だに一般的体系が構築されていない無限大不変測度を持つ可測力学系に対するエルゴード理論において、determinismとrandomnessの概念の違いを捉える新たな不変量を見つけるために具体的な数論的変換から生まれる数の持つランダム性に着目し、その複雑性に関する研究成果を得た。数論的変換から生まれる数の複雑性に関する本研究成果は理論計算機科学と密接に結びついており、現代において必要不可欠である計算機の高速性や精度の向上に繋がることを期待する。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (4 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results)

  • [Journal Article] On the construction of the natural extension of the Hurwitz complex continued fraction map.2019

    • Author(s)
      Hiromi Ei, Shunji Ito, Hitoshi Nakada, Rie Natsui
    • Journal Title

      Monatshefte fur Mathematik

      Volume: 188 Issue: 1 Pages: 37-86

    • DOI

      10.1007/s00605-018-1229-0

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Construction of Continued Fraction Normal Series in Positive Characteristic2017

    • Author(s)
      Dong Han KIM, Hitoshi NAKADA and Rie NATSUI
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 39

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] On the group extension of complex continued fraction maps2019

    • Author(s)
      Rie Natsui
    • Organizer
      St Virgil FWF/JSPS Meeting
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the construction of the natural extensions of the nearest integer complex continued fraction maps2018

    • Author(s)
      Rie Natsui
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the ergodic properties of the nearest integer continued fraction map over an imaginary quadratic field2018

    • Author(s)
      Rie Natsui
    • Organizer
      St Virgil FWF/JSPS Meeting
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] On absolutely continuous invariant measures for complex continued fraction maps2016

    • Author(s)
      Hiromi Ei and Rie Natsui
    • Organizer
      Substitutions and continued fractions
    • Place of Presentation
      LIAFA(パリ)
    • Year and Date
      2016-03-08
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi