• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Contact geometry of partial differential equations of third order

Research Project

Project/Area Number 15K21058
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Basic analysis
Research InstitutionKyushu Institute of Technology

Principal Investigator

Noda Takahiro  九州工業大学, 大学院工学研究院, 准教授 (10596555)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords微分式系の理論 / 偏微分方程式の幾何学 / 微分式系 / 微分式系の幾何学 / 接触変換群 / 三階の偏微分方程式系 / 幾何学 / 微分方程式
Outline of Final Research Achievements

Differential equation is an important mathematical concept for analyzing various phenomena in the world. In particular, second-order partial differential equations provide typical examples describing various important model phenomena in mathematical physics and engineering, including the wave equation (hyperbolic type), heat equation (parabolic type), and Laplace equation (elliptic type). As mentioned above, second order equations have been traditionally studied.
On the other hand, for third-order partial differential equations, several progress has been made, including the discovery of special equations (integrable systems) such as the KdV equation. However, it still seemed insufficient from the point of view of the geometric foundation. Hence, in this research project, I formulated rigorously a geometric theory of third-order partial differential equations.including a classification into several classes and characterization of several aspects.

Academic Significance and Societal Importance of the Research Achievements

微分方程式は, 世の中の様々な現象を分析するための重要な数学的概念である。ニュートンの運動方程式をはじめとして、他にも波動方程式(双曲型)、熱方程式(放物型)、ラプラス方程式(楕円型)など、数理物理学や工学における種々の重要なモデル現象を記述できる。この微分方程式は本来解析学の分野に属する研究対象であるが、これを幾何学の分野の研究対象(微分式系)として視覚化し、空間図形的観点から微分方程式がもつ様々な性質を浮きぼりにするのが私の研究内容である。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 2017 2015

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Invited: 2 results)

  • [Journal Article] Type-changing PDE and singularities of Monge characteristic systems2019

    • Author(s)
      Takahiro Noda and Kazuhiro Shibuya
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 82

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On a certain invariant of differential equations associated with nilpotent graded Lie algebras2018

    • Author(s)
      Takahiro Noda
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: Volume 47, Number 3

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On prolongations of second-order regular overdetermined systems with two independent and one dependent variables2017

    • Author(s)
      Takahiro Noda
    • Journal Title

      Hiroshima Mathematical Journal

      Volume: 47

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] 二階の偏微分方程式系の変換理論に向けて~明示的視点から~2018

    • Author(s)
      野田尚廣
    • Organizer
      北九州ワークショップ2018「不変式論と微分幾何学への応用」
    • Related Report
      2018 Research-status Report
  • [Presentation] 二階のジェット空間上の接触変換再考~明示的視点から~2017

    • Author(s)
      野田尚廣
    • Organizer
      山口佳三先生退職記念研究集会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 三階の偏微分方程式系の接触幾何学2015

    • Author(s)
      野田 尚廣
    • Organizer
      部分多様体論と種々の幾何構造
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-06-22
    • Related Report
      2015 Research-status Report
    • Invited

URL: 

Published: 2015-04-16   Modified: 2022-11-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi