• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Pattern-recognition-based selection of optimal financial indicators for bankruptcy / delisting prediction

Research Project

Project/Area Number 15K21395
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Library and information science/Humanistic social informatics
Management
Research InstitutionTokyo University of Science

Principal Investigator

Hosaka Tadaaki  東京理科大学, 経営学部経営学科, 講師 (60516235)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords倒産予知 / 実質破綻予知 / 機械学習 / AdaBoost / 深層学習 / 画像化 / 畳み込みニューラルネットワーク / 倒産早期予知 / 財務指標選択 / 実質破綻予測
Outline of Final Research Achievements

In this research, we aim to resolve some problems with respect to corporate bankruptcy prediction. We propose methods of 1) realizing the extraction of financial indicators and the derivation of discriminant functions in a consistent framework, and 2) applying the techniques of deep learning to bankruptcy prediction. As a result, we have shown that it is possible to predict with high accuracy even more than one year before bankruptcy. It was also shown that the method using deep learning can predict with high precision compared with the conventional methods.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (11 results)

All 2018 2017 2016 2015

All Journal Article (3 results) (of which Open Access: 2 results,  Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (8 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] BOOSTING APPROACH TO EARLY BANKRUPTCY PREDICTION FROM MULTIPLE-YEAR FINANCIAL STATEMENTS2017

    • Author(s)
      Yuta Takata, Tadaaki Hosaka, Hiroshi Ohnuma
    • Journal Title

      Asia Pacific Journal of Advanced Business and Social Studies

      Volume: 3 Issue: 2 Pages: 66-76

    • DOI

      10.25275/apjabssv3i2bus7

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] Corporate Bankruptcy Forecast Using RealAdaBoost2016

    • Author(s)
      Tadaaki Hosaka, Yuta Takata
    • Journal Title

      iNFORMATION-An International Interdisciplinary Journal

      Volume: 19 Pages: 2285-2298

    • NAID

      40020905300

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] AdaBoost を用いた実質破綻予測モデルの構築と財務指標選択2016

    • Author(s)
      保坂忠明、髙田悠太、大沼宏
    • Journal Title

      日本経営分析学会年報「経営分析研究」

      Volume: 32 Pages: 29-43

    • NAID

      40020816280

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 深層学習による企業の実質破綻予知2018

    • Author(s)
      保坂忠明
    • Organizer
      電子情報通信学会パターン認識・メディア理解(PRMU)研究会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 財務比率の画像化と深層学習による企業倒産予知2018

    • Author(s)
      保坂忠明
    • Organizer
      経営情報学会 春季全国研究発表大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 決算報告書に基づくRealAdaBoostによる早期の倒産予測2017

    • Author(s)
      保坂忠明,髙田悠太
    • Organizer
      2017年電子情報通信学会総合大会
    • Place of Presentation
      名城大学天白キャンパス
    • Year and Date
      2017-03-22
    • Related Report
      2016 Research-status Report
  • [Presentation] 実質破綻の早期発見を目指したブースティングによる予測モデルの構築2017

    • Author(s)
      髙田悠太,保坂忠明,大沼宏
    • Organizer
      2017年経営情報学会 春季全国研究発表大会
    • Place of Presentation
      法政大学市ヶ谷キャンパス
    • Year and Date
      2017-03-09
    • Related Report
      2016 Research-status Report
  • [Presentation] Boosting Approach to Early Bankruptcy Prediction from Multiple-year Financial Statements2017

    • Author(s)
      Yuta Takata, Tadaaki Hosaka, Hiroshi Ohnuma
    • Organizer
      4th Asia Pacific Conference on Advanced Research
    • Place of Presentation
      Hotel Grand Chancellor, Melbourne, Australia
    • Year and Date
      2017-03-04
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 時系列財務指標とAdaBoostを用いた実質破綻予測モデルの構築2016

    • Author(s)
      髙田悠太,保坂忠明,大沼宏
    • Organizer
      2016年日本経営分析学会年次大会
    • Place of Presentation
      中部大学春日井キャンパス
    • Year and Date
      2016-05-21
    • Related Report
      2016 Research-status Report
  • [Presentation] Financial Ratios Extraction Using AdaBoost for Delisting Prediction2015

    • Author(s)
      Yuta Takata, Tadaaki Hosaka, and Hiroshi Ohnuma
    • Organizer
      The Seventh International Conference on Information
    • Place of Presentation
      National Taiwan University
    • Year and Date
      2015-11-25
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 上場廃止企業を判別するためのAdaBoostを用いた財務指標選択2015

    • Author(s)
      髙田悠太、保坂忠明、大沼宏
    • Organizer
      経営分析学会
    • Place of Presentation
      産業能率大学
    • Year and Date
      2015-05-16
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi