Project/Area Number |
15KT0020
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Mathematical Sciences in Search of New Cooperation
|
Research Institution | Sugiyama Jogakuen University (2017-2018) Kumamoto University (2015-2016) |
Principal Investigator |
Jin-ichi Itoh 椙山女学園大学, 教育学部, 教授 (20193493)
|
Co-Investigator(Kenkyū-buntansha) |
浪川 幸彦 椙山女学園大学, 教育学部, 教授 (20022676)
瀧澤 重志 大阪市立大学, 大学院生活科学研究科, 教授 (40304133)
堀山 貴史 埼玉大学, 理工学研究科, 准教授 (60314530)
|
Project Period (FY) |
2015-07-10 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥10,920,000 (Direct Cost: ¥8,400,000、Indirect Cost: ¥2,520,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2017: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2016: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2015: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 直観幾何学 / 多面体 / 折り畳み / フレームワーク / 剛性 / 数学教育 / フレークワーク |
Outline of Final Research Achievements |
We got results balanced well as follows for (A) continuous folding of polyhedron, (B) cooperation with architectural engineering, (C) cooperation with mathematical education, (D) establishment of intuitive geometry. (A) We discovered some new continuous flat folding of polyhedra and extent it the union of 2D surfaces of high dimensional several regular polytopes. (B) It was shown to change Coxeter's regular skew polyhedra to have rigidity. (C) Several meeting on mathematics education was held to demonstrate the usefulness of intuitive geometry, and to develop teaching materials using dynamic geometry software. (D) The meeting "intuitive geometry" was continued, and the recognition of the name "intuitive geometry" could be improved. In addition, We have advanced several research that can be called intuitive geometry.
|
Academic Significance and Societal Importance of the Research Achievements |
現代の最先端の数学の研究は,抽象化されたものが多い.現実社会や他分野の研究や教育現場で扱う数学との乖離が甚だしくなっている.それに対して,直観幾何学といえるような,具体的な図形的イメージを持つ幾何学にも,まだまだ多くの研究すべきで問題が残されていることを示すことが出来た.また,直観幾何学の他分野との連携の事例を多く作ることによってその有用性を示すことになったものと信じる. 直観幾何学という研究会を継続することによって,その知名度を高めることが出きた.今後も直観幾何学と言えるような幾何学研究が継続されることを期待される.
|