• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of hub phenomenon occurring in large-scale data and its application to bio-medical data

Research Project

Project/Area Number 16H02821
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Multimedia database
Research InstitutionYamagata University (2017-2020)
National Institute of Genetics (2016)

Principal Investigator

Hara Kazuo  山形大学, 理学部, 准教授 (30467691)

Co-Investigator(Kenkyū-buntansha) 鈴木 郁美  長崎大学, 情報データ科学部, 准教授 (20637730)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2016: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Keywords近傍検索
Outline of Final Research Achievements

We have developed a method to suppress the appearance of hubs by converting the distance between data so that the data density is uniform. In particular, as an important graph construction method in graph-based semi-supervised learning, we proposed a method that does not have hubs and does not require an excessive reduction in the number of edges. Furthermore, when we investigated whether hubness occurred in bio-sequence data i.e., whether a specific sequence was similar to many other sequences, we confirmed that hubness occurred.

Academic Significance and Societal Importance of the Research Achievements

Radovanovic et al. JMLR 2010によって「(グラフ上ではなく)空間上のハブ」に起因する問題が提起されて以来,ハブを解消または利用する方法(例えば新たなグラフィカルモデルやクラスタリング法)の開発,および,各ドメインタスクへの適用は,国際的な競争となりつつある.取り分け,音楽情報検索におけるハブを取り除く研究は,オーストリアの研究グループOFAIが世界をリードしている(Schnitzer et al. JMLR 2012).本研究の成果は,医療生命系データにおけるハブの問題を,世界に先駆けて解決する土台となるものである.

Report

(5 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (1 results)

All 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results)

  • [Journal Article] Centered kNN Graph for Semi-Supervised Learning2017

    • Author(s)
      Suzuki Ikumi、Hara Kazuo
    • Journal Title

      SIGIR '17 Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval

      Volume: SIGIR '17 Proceedings Pages: 857-860

    • DOI

      10.1145/3077136.3080662

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi