Mechanism of energy storable photovoltalic nanoparticle
Project/Area Number |
16H04279
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Hiroshima University |
Principal Investigator |
Inoue Shuhei 広島大学, 工学研究科, 准教授 (60379899)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2016: ¥11,570,000 (Direct Cost: ¥8,900,000、Indirect Cost: ¥2,670,000)
|
Keywords | フォトクロミズム / 界面 / 拡散 / ナノ粒子 / 熱緩和 / エネルギー / 電子状態 / 仕事関数 / イオン化ポテンシャル / 熱工学 / ナノ材料 / 太陽電池 / 薄膜 / 電子デバイス・機器 |
Outline of Final Research Achievements |
It has been almost ten years since photochromic nanoparticle, which can store energy, is reported. To date its principle is completely unclear; therefore, no one can solve its involved serious problem that it shows extraordinary self discharge; hence, it cannot be proceeded for application state. Our previous study speculated that ionization potential of the material is key issue for this phenomenon, so that we tried to develop photo yield spectrometer (PYS), which can measure work function and ionization potential under the atmosphere unlike XPS and UPS. Then, we verified our model by comparing the experimental results. Regarding to the development of PYS, we examined using reference samples of gold, aluminum, and ITO in order to confirm whether PYS can appropriately measure the sample or not. Compared with literatures, our results were appropriate. As for our target materials, we could succeed in constant synthesis and made clear how the material showed photochromic phenomenon.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で対象としている材料は、蓄電の原理はもちろん重要な関連があるフォトクロミズムの発現に関しても全く不明であった。これまでのモデルは薄膜単体での現象であるととらえられていたが、これが全くの間違いで実は電極として準備されている透明電極(ITO)との界面で起こる現象であることを明らかにした。さらにこれら2層の薄膜でフォトクロミズムを発現できる組み合わせをモデルをもとに試したところフォトクロミズム発現の有無がモデル通りであった。このことからもモデルの解明はできたと言ってよい。このような現象は全く新規の現象で学術的にも非常に興味深い。モデルが解明され、実用化に向けた研究も今後進むと予想される。
|
Report
(4 results)
Research Products
(16 results)