Fundamental research and development of low-loss p-type SiC superjunction power MOSFETs
Project/Area Number |
16H04326
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | University of Tsukuba |
Principal Investigator |
Yano Hiroshi 筑波大学, 数理物質系, 准教授 (40335485)
|
Co-Investigator(Kenkyū-buntansha) |
岩室 憲幸 筑波大学, 数理物質系, 教授 (50581203)
岡本 大 筑波大学, 数理物質系, 助教 (50612181)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥16,120,000 (Direct Cost: ¥12,400,000、Indirect Cost: ¥3,720,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2016: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
|
Keywords | 炭化ケイ素 / パワーデバイス / 超接合 / p型MOS / pMOS / 電子・電気材料 / MOS界面 |
Outline of Final Research Achievements |
In this study, we have performed fundamental research on p-type superjunction MOSFETs using SiC (silicon carbide), which are expected for high-efficiency, high-capacity, and easy-to-use complementary power converters. P-type SiC MOS devices fabricated under various conditions were characterized and analyzed. It is revealed that nitrogen atoms introduced by NO annealing act as a donor resulting in formation of inversion layers. Longer nitridation time introduced too much nitrogen atoms, which bring a threshold voltage shift and reduction of channel mobility. Precise evaluation of hole leakage current through the gate oxide was performed, and its conduction mechanism was revealed. We also found that the superjunction structure can reduce on-resistance in the p-type drift layer by 40% compared with a conventional structure.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、SiCのp-MOS界面特性について多くの新たな知見が得られた。この成果はより良いp型SiC MOSデバイス開発の基盤となり、低抵抗・高信頼性の獲得につながる。p型超接合構造の設計指針も示すことができ、これらは従来にない高耐圧・低損失p型スイッチング素子の実現可能性を示すものである。n型素子と組み合わせることで相補型電力変換器の実現が期待できる。これは電気エネルギーの有効活用につながり、地球環境問題の解決にも貢献できる。
|
Report
(5 results)
Research Products
(44 results)