Unraveling the Mechanism behind Cell Motility Enhancement due to Anisotropic Mechanical Signals in Relation to Cancer and Metastasis
Project/Area Number |
16H05972
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Nano/Microsystems
|
Research Institution | The University of Tokyo |
Principal Investigator |
Keiichiro Kushiro 東京大学, 大学院工学系研究科(工学部), 特任講師 (90632539)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥25,870,000 (Direct Cost: ¥19,900,000、Indirect Cost: ¥5,970,000)
Fiscal Year 2019: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2018: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2017: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2016: ¥14,950,000 (Direct Cost: ¥11,500,000、Indirect Cost: ¥3,450,000)
|
Keywords | マイクロトポグラフィー / 微小構造 / ナノ・マイクロシステム / 細胞移動 / 癌 / 組織工学 / 蛍光イメージング / 放射線イメージング / Microtopography / Cell Migration / Cancer Metastasis / Hydrogel / Bioimaging / FDG / Cancer / Biomaterials / Biomaterial / Microdevice / Mechanotransduction / EMT / Structured Biomaterials |
Outline of Final Research Achievements |
During metastasis, cancer cells migrate through various microstructures in the body, but the mechanical influence of these structures or the underlying mechanism have not been clarified. From our previous works, it was shown that microgroove structures can change the motility of various cells like breast cancer epithelial cells, referred to as "topography effect." Here, we combined such topography effect and various stimuli (chemical gradient, hypoxia, fluid motion) to create biodevices for cancer characterization and motility regulation. As one result, the interactions between the various stimuli and topography effect was deciphered at the molecular level, and thus a more precise cell regulation could be realized. These are important discoveries for cancer metastasis, and the potentials for utilizing microstructures or signal molecules associated with them in preventing metastasis was suggested.
|
Academic Significance and Societal Importance of the Research Achievements |
接着系細胞は微細構造と機械的に相互作用をしながら存在しており、その影響はがん細胞の転移始め、生体内の様々な重要な細胞移動現象(組織形成、免疫反応)とも深く関わっている。本研究では、微小構造化された生体材料を通して、微細構造と細胞移動に関わる様々な相互作用の仕組みを解明し、それを応用したデバイス・分子技術による癌悪性評価や癌転移の阻止を目的とする。さらに、微細加工技術で作られた構造体を用いた細胞挙動制御法は、機械的シグナル伝達を精密かつ局所的に細胞・組織に伝える手段として、再生医療やバイオデバイスの分野において世界中で取り入れ始められており、我々の研究成果も多分野において注目されている。
|
Report
(5 results)
Research Products
(37 results)