• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on (noncommutative) algebraic varieties via categorical points of view

Research Project

Project/Area Number 16H05994
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

Okawa Shinnosuke  大阪大学, 理学研究科, 准教授 (60646909)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥9,750,000 (Direct Cost: ¥7,500,000、Indirect Cost: ¥2,250,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2016: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords導来圏 / 三角圏 / 極小モデル理論 / モジュライ / 非可換射影幾何学 / 非可換代数幾何学 / 半直交分解 / モジュライ空間 / 代数多様体 / 双有理幾何学 / 代数幾何学 / アーベル圏 / 代数多様体のGrothendieck環
Outline of Final Research Achievements

I worked on several problems of noncommutative algebraic geometry (= a field where people study abelian or enhanced triangulated categories as geometric objects generalizing the category of coherent sheaves). We, Among others, I. proved that the moduli space classifying semiorthogonal decompositions of the derived category of coherent sheaves is an etale algebraic space; II. defined and confirmed the basics of the minimal model theory for b-boundary divisors; III. proved that the moduli stack of stable pointed curves are (almost) always rigid in the noncommutative sense; IV. gave general definition of noncommutative del Pezzo surfaces; V. proposed a few hypotheses concerning the relationship between derived equivalence of algebraic varieties and the additive invariants. We also found a few interesting examples.

Academic Significance and Societal Importance of the Research Achievements

円や放物線のように「方程式=0」という形で表現される図形を代数多様体と呼び、数学内外の様々な分野と関係がある。代数多様体上には連接層というある種の線型な対象が(無数に)あるが、その全体の有り様(専門用語で圏)を研究することで代数多様体の本質に迫るのが非可換代数幾何学である。比較的若い分野であるためまだまだ基本的で重要なことがわかっていないが、例えば上記の成果Iはその一つを明らかにしたものである。また、Vは連接層の圏が代数多様体の本質をどこまで捉えているかという、非可換代数幾何学そのものの意義に関わる研究である。IVは非可換射影幾何学で研究されるべき対象を一気に増やしたという意義がある。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (42 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (10 results) Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (24 results) (of which Int'l Joint Research: 20 results,  Invited: 24 results) Remarks (3 results) Funded Workshop (2 results)

  • [Int'l Joint Research] University of Antwerp(ベルギー)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] SISSA(イタリア)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] FWO(ベルギー)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] ICTP(イタリア)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Carleton University(カナダ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University of Edinburgh(英国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] FWO(ベルギー)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] University of New Brunswick(カナダ)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] University of New South Wales(オーストラリア)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Steklov Institute of Mathematics(ロシア連邦)

    • Related Report
      2017 Annual Research Report
  • [Journal Article] An example of birationally inequivalent projective symplectic varieties which are D-equivalent and L-equivalent2020

    • Author(s)
      Shinnosuke Okawa
    • Journal Title

      Mathematische Zeitschrift

      Volume: - Issue: 1-2 Pages: 459-464

    • DOI

      10.1007/s00209-020-02519-3

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The class of the affine line is a zero divisor in the Grothendieck ring: via G2-Grassmannians2019

    • Author(s)
      Atsushi Ito, Makoto Miura, Shinnosuke Okawa, Kazushi Ueda
    • Journal Title

      Journal of Algebraic Geometry

      Volume: 28 Issue: 2 Pages: 245-250

    • DOI

      10.1090/jag/731

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Surfaces of globally F-regular type are of Fano type2017

    • Author(s)
      Shinnosuke Okawa
    • Journal Title

      Tohoku Mathematical Journal

      Volume: 69(1) Pages: 35-42

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Presentation] Exceptional collections on the Hirzebruch surface of degree 22020

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Derived categories and geometry of algebraic varieties
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Moduli space of semiorthogonal decompositions2020

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Shafarevich Seminar at Steklov Institute of Mathematics
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Deformations of semiorthogonal decompositions and application to symmetric products of curves2019

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Interaction Between Algebraic Geometry and QFT
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Defining noncommutative del Pezzo surfaces as AS-regular I-algebras2018

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      MFO workshop: Interactions between Algebraic Geometry and Noncommutative Algebra
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the definition of noncommutative del Pezzo surfaces2018

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Positivity in Algebraic Geometry
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the definition of noncommutative del Pezzo surfaces2018

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      HOMOLOGICAL METHODS IN ALGEBRA AND GEOMETRY II
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the definition of noncommutative del Pezzo surfaces2018

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Differential, Algebraic and Topological Methods in Complex Algebraic Geometry
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative del Pezzo surfaces as AS-regular I-algebras2018

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Noncommutative deformations and moduli spaces
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the definition of noncommutative del Pezzo surfaces2018

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Higher dimensional algebraic geometry
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Derived equivalence and Grothendieck ring of varieties2017

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Seoul Seminar on Algebraic Geometry-4
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Derived Equivalence and Grothendieck Ring of Varieties2017

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Higher Dimensional Algebraic Geometry
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative del Pezzo surfaces and their moduli spaces2017

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Classification and Moduli theory of algebraic varieties
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative rigidity of the moduli stack of stable pointed curves2017

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      非可換代数幾何学とその周辺
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative del Pezzo surfaces and their moduli space2017

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      第23回複素幾何シンポジウム
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Compact moduli of marked noncommutative del Pezzo surfaces2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Generalized Geometry and Noncommutative Algebra
    • Place of Presentation
      Oxford University
    • Year and Date
      2016-12-05
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative projective planes and their moduli spaces2016

    • Author(s)
      大川新之介
    • Organizer
      静岡代数学セミナー
    • Place of Presentation
      静岡大学
    • Year and Date
      2016-11-25
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] On derived equivalence and Grothendieck ring of varieties2016

    • Author(s)
      大川新之介
    • Organizer
      都の西北代数幾何学シンポジウム
    • Place of Presentation
      早稲田大学
    • Year and Date
      2016-11-15
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Minimal model theory for Brauer pairs2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Categorical and analytic invariants in Algebraic geometry IV
    • Place of Presentation
      Kavli IPMU
    • Year and Date
      2016-11-14
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Derived equivalence and Grothendieck ring of varieties2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Workshop on spherical varieties
    • Place of Presentation
      Yau Mathematical Sciences Center, Tsinghua University, China
    • Year and Date
      2016-10-31
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Compact moduli of marked noncommutative del Pezzo surfaces2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Non-commutative, derived and homotopical methods in geometry
    • Place of Presentation
      Universiteit Antwerpen, Belgium
    • Year and Date
      2016-09-19
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative Hirzebruch surfaces2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Categorical and analytic invariants in Algebraic geometry 3
    • Place of Presentation
      Higher School of Economics
    • Year and Date
      2016-09-12
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Compact moduli of marked noncommutative del Pezzo surfaces2016

    • Author(s)
      大川新之介
    • Organizer
      代数学シンポジウム
    • Place of Presentation
      佐賀大学
    • Year and Date
      2016-09-07
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Noncommutative Hirzebruch surfaces2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      School and Workshop on Homological Methods in Algebra and Geometry
    • Place of Presentation
      African Institute for Mathematical Sciences Ghana
    • Year and Date
      2016-08-01
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On noncommutative Hirzebruch surfaces2016

    • Author(s)
      Shinnosuke Okawa
    • Organizer
      Non-commutative crepant resolutions, Ulrich Modules and generalizations of the Mckay correspondence
    • Place of Presentation
      RIMS, Kyoto University
    • Year and Date
      2016-06-13
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Remarks]

    • URL

      http://www4.math.sci.osaka-u.ac.jp/~okawa/

    • Related Report
      2019 Annual Research Report
  • [Remarks]

    • URL

      http://www.math.sci.osaka-u.ac.jp/~okawa/index.html

    • Related Report
      2017 Annual Research Report
  • [Remarks]

    • URL

      http://www.math.sci.osaka-u.ac.jp/~okawa/

    • Related Report
      2016 Annual Research Report
  • [Funded Workshop] Derived category and birational geometry2017

    • Place of Presentation
      大阪大学
    • Year and Date
      2017-02-20
    • Related Report
      2016 Annual Research Report
  • [Funded Workshop] Algebraic geometry symposium 20162016

    • Place of Presentation
      城崎国際アートセンター
    • Year and Date
      2016-10-17
    • Related Report
      2016 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2022-07-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi