Hierarchical results on complexity classes and methods for evaluating logic synthesis systems
Project/Area Number |
16K00020
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Theory of informatics
|
Research Institution | Hiroshima University |
Principal Investigator |
Iwamoto Chuzo 広島大学, 先進理工系科学研究科(工), 教授 (60274495)
|
Project Period (FY) |
2016-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 計算複雑性 / 計算複雑さ / 計算の複雑さ / 計算量理論 |
Outline of Final Research Achievements |
It is strongly believed that in order to solve more difficult problems, we need more computational resources, such as space and time. Studies on hierarchies of complexity classes provide a theoretical evidence for such properties. In this research, we studied the computational complexity of several combinatorial problems, and proved that some of those problems are NP-hard. We also proposed placement algorithms which assign a set of minimum guards on a given polygon, and discussed the complexity of the placement problem.
|
Academic Significance and Societal Importance of the Research Achievements |
理論計算機科学の分野で最も重要かつ有名な未解決問題はP≠NP予想の証明である.本予想は,ミレニアム懸賞問題としてアメリカのクレイ数学研究所によって100万ドルの懸賞金がかけられている7問題の一つである.本研究では,どのような問題がNP完全になるのか,または多項式時間で解ける問題のクラスPに属するのかを探究することで,予想の証明の手がかりを探った.その結果,十数個の組合せ問題がNP完全になることを解明できた.
|
Report
(7 results)
Research Products
(20 results)