• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Quantum Bit Representation-Based Gene-Coding Method for Graph Optimization Problems and Evolutionary Computation Using the Method

Research Project

Project/Area Number 16K00318
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionPrefectural University of Kumamoto (2017-2018)
Ariake National College of Technology (2016)

Principal Investigator

Moriyama Yoshifumi  熊本県立大学, 総合管理学部, 准教授 (10413866)

Co-Investigator(Kenkyū-buntansha) 飯村 伊智郎  熊本県立大学, 総合管理学部, 教授 (50347697)
Research Collaborator NAKAYAMA Shigeru  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords量子風進化計算 / 進化計算 / 量子ビット表現 / グラフ最適化 / 最大カット問題 / 組合せ最適化 / QEA / 個性導入法 / ノアの方舟戦略 / ヒューリスティクス / ソフトコンピューティング
Outline of Final Research Achievements

To expand the applicable fields of the quantum-inspired evolutionary algorithm (QEA), we have proposed a gene-coding method that can represent graphs and have shown that the QEA implemented the gene-coding method can search approximate solutions through the experimental results using the maximum cut problem, which is one of the graph optimizations.
Furthermore, we have proposed a new measure that can estimate the state of the qubit for improving search performance. Introducing the proposed measure enables to maintain the diversity of the population and leads the search performance improvement.
We introduce a nonuniform rotation angle, which has various convergence speeds and is regarded as the individuality, into a quantum-inspired individual. Introducing the proposed individuality can eliminate the cumbersome process required to design a rotation angle while ensuring the quality of the obtained solution.

Academic Significance and Societal Importance of the Research Achievements

量子風進化計算手法の適用範囲を拡張し,グラフ最適化問題の一つである最大カット問題を用いた計算機実験によって近似解を探索できることを示した.厳密な最適解を求めることが困難な問題において,限られた時間の中で近似解を発見することは非常に有用である.
一方,確率振幅の収束状態を測定可能な指標は,効率的な解探索を実現し,非一様な回転角度を用いた個性は,解の探索性能を維持しつつパラメータ調整に係る煩雑な作業を軽減する.収束状態の測定指標および量子風個体の個性は,量子ビット表現を用いる進化計算手法であれば適用可能であり,最大カット問題を含むグラフ最適化問題だけでなく最適化問題全般への応用が期待できる.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (9 results)

All 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Individuality for Quantum-Inspired Individuals Based on Nonuniform Convergence Speed in Maximum Cut Problem2018

    • Author(s)
      Moriyama Yoshifumi, Iimura Ichiro, and Nakayama Shigeru
    • Journal Title

      Journal of Signal Processing

      Volume: 22 Issue: 6 Pages: 315-326

    • DOI

      10.2299/jsp.22.315

    • NAID

      130007521370

    • ISSN
      1342-6230, 1880-1013
    • Year and Date
      2018-11-25
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Search performance analysis of qubit convergence measure for quantum-inspired evolutionary algorithm introducing on maximum cut problem2018

    • Author(s)
      Moriyama Yoshifumi, Iimura Ichiro, and Nakayama Shigeru
    • Journal Title

      International Journal of Computational Intelligence Studies

      Volume: 7 Issue: 3/4 Pages: 231-231

    • DOI

      10.1504/ijcistudies.2018.096185

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Search Performance Analysis of Qubit Convergence Measure for Quantum-Inspired Evolutionary Algorithm Introducing on Maximum Cut Problem (in press)2018

    • Author(s)
      Yoshifumi Moriyama , Ichiro Iimura, and Shigeru Nakayama
    • Journal Title

      International Journal of Computational Intelligence Studies (IJCIStudies)

      Volume: in press

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 多目的最適化を可能とする量子風進化計算QMEAの多目的グラフ最適化問題への展開2019

    • Author(s)
      森山賀文, 飯村伊智郎, 中山茂
    • Organizer
      2018年度情報文化学会九州支部研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Study on Non-Uniform Convergence Speed of Quantum-Inspired Individuals on QEA in Maximum Cut Problem2018

    • Author(s)
      Yoshifumi Moriyama , Ichiro Iimura, and Shigeru Nakayama
    • Organizer
      2018 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP2018)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 量子風進化計算を用いたグラフ最適化における量子ビット収束状態測定法2018

    • Author(s)
      森山賀文, 飯村伊智郎, 中山茂
    • Organizer
      2017年度情報文化学会九州支部研究会
    • Related Report
      2017 Research-status Report
  • [Presentation] Investigation on Introducing Qubit Convergence Measure to QEA in Maximum Cut Problem2017

    • Author(s)
      Yoshifumi Moriyama , Ichiro Iimura, and Shigeru Nakayama
    • Organizer
      2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IEEE IWCIA2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] グラフ最適化のための量子ビット表現に基づく遺伝子表現法に関する一考察2017

    • Author(s)
      森山賀文, 飯村伊智郎, 中山茂
    • Organizer
      平成29年度 電気・情報関係学会九州支部連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] グラフ最適化問題における量子ビット表現に基づく遺伝子表現法の検討2017

    • Author(s)
      森山賀文,飯村伊智郎,中山茂
    • Organizer
      2016年度 情報文化学会九州支部研究会
    • Place of Presentation
      都城工業高等専門学校
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi