Evidence-based Financial Technical Analysis Using Machine Learning Approach
Project/Area Number |
16K00320
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Soft computing
|
Research Institution | Ibaraki University |
Principal Investigator |
Tomoya Suzuki 茨城大学, 理工学研究科(工学野), 教授 (70408649)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 金融データサイエンス / フィンテック / AI運用 / 人工知能 / 機械学習 / 集合知 / FinTech / 集団学習 / 金融工学 / テクニカル分析 / ソフトコンピューティング / 効率的市場仮説 / 金融テクニカル分析 / 行動経済学 |
Outline of Final Research Achievements |
The application of artificial intelligence (AI) technology to business has been accelerating. In particular, we applied AI technologies to FinTech, and proposed some asset management models for financial business. Our models use various techniques such as deep learning, ensemble learning, anomaly detection, etc., and these are considered as a kind of technical analysis based on past information like price movements. We verified the validity of them on the basis of investment simulations and statistical hypothesis tests using real financial data.
|
Academic Significance and Societal Importance of the Research Achievements |
現実の金融データを用いた実証分析の結果,単にまぐれでは解釈できないほどの収益性を確認でき,これは伝統的経済学の基盤をなす効率的市場仮説の反証になり得る可能性を指摘した.しかし実際の資産運用においては様々な制約があり,必ずしも実験通りに機能しない原因を提言した.なお株価情報のような数値データのみならず,ニュース記事のようなテキストデータも資産運用アルゴリズムに取り入れることで,近年において注目されているAI運用に関する可能性についても検討した.
|
Report
(5 results)
Research Products
(41 results)