• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on irreducible representations of hyperspecial compact group and its applications

Research Project

Project/Area Number 16K05053
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionMiyagi University of Education

Principal Investigator

Takase Koichi  宮城教育大学, 教育学部, 特任教授 (60197093)

Project Period (FY) 2016-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
KeywordsWeil 表現 / 超尖点的既約表現 / Jordan 三重系 / Jordan 代数 / 正則離散系列表現 / 球関数 / Laplace 変換 / Langlandsパラメータ / Weil 群 / 一般化された Laplace 変換 / root number / Langlands パラメータ / 有限群の既約表現 / Weil-Dekigne群 / .超尖点的既約表現 / ヴェイユ表現 / 有限群の線形表現 / ハイパースペシャルコンパクト部分群 / Weil表現
Outline of Final Research Achievements

1)A natural parametrization of the regular irreducible complex linear representations of the finite group defined as a finite reduction of a group scheme defined over the integer ring of a non-Archimedian local foiled is given. The results are presented by Regular irreducible representations of classical groups over finite quotient rings (Pacific Journal of Mathematics (2021) 221-256)

2) As an application of the results of 1), certain supercuspidal representations of the symplectic group and the special linear group over non-Archimedian local field are explicitely constructed, and the formal degree conjecture and the root number conjecture are verified.THe results are presentated by On certain supercuspidal representations of symplectic groups associated with tamely ramified extensions : the formal degree conjecture and the root number conjecture (arXiv:2109.07124).

Academic Significance and Societal Importance of the Research Achievements

局所体の整数環上定義された群スキームから reduction により生じる有限群の既約表現を決定することは,有限群の一般論から興味深いばかりではなく,局所体上の代数群の超尖点的既約表現を具体的に構成する際に非常に有効に用いることが出来るので,極めて重要な研究課題である.本研究では,有限群の既約表現の中でも generic な位置にある regular な既約表現の完全なパラメータ付けを与えることに成功した.更にその応用として,斜交群と特殊線形群の超尖点的既約表現を具体的に構成して,「形式的次数予想」と「ルートナンバー予想」が成り立つことを確かめることができた.

Report

(9 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2021 2019 2018 2017 2016

All Journal Article (10 results) (of which Peer Reviewed: 2 results,  Open Access: 5 results) Presentation (1 results) (of which Int'l Joint Research: 1 results) Book (1 results)

  • [Journal Article] Regular irreducible representations of classical groups over finite quotient rings2021

    • Author(s)
      Koichi Takase
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 311 Pages: 221-256

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On certain supercuspidal representations of SLn(F) associated with tamely ramified extensions:the formal degree conjecture and the rot number conjecture2021

    • Author(s)
      Koichi Takase
    • Journal Title

      arXiv:2109.04642

      Volume: -

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] On certain supercuspidal representations of symplectic groups associated with tamely ramified extensions:the formal degree conjecture and the rot number conjecture2021

    • Author(s)
      Koichi Takase
    • Journal Title

      arXiv:2109.07124

      Volume: -

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] On supercuspidal representation of Sp2n and Langlands parameters2021

    • Author(s)
      Koichi Takase
    • Journal Title

      数理解析研究所講究録

      Volume: 2204 Pages: 78-95

    • NAID

      120007187450

    • Related Report
      2021 Research-status Report
  • [Journal Article] Regular irreducible representations of classical groups over finite quotient rings2019

    • Author(s)
      Takase, Koichi
    • Journal Title

      arXiv.org (to be pubished on Pacific Journal of Mathematics)

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] On supercuspidal representations of SLn(F) associated with tamely ramified extensions2019

    • Author(s)
      Takase, Koichi
    • Journal Title

      arXiv.org (arXiv:1805.06186v2)

      Volume: -

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] On supercuspidal representations of SLn(F) associated with tamely ramified extensions2018

    • Author(s)
      Takase, Koichi
    • Journal Title

      arXiv.org

      Volume: 1805 Pages: 1-25

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] On generic supercuspidal representations of Sp(2n)2017

    • Author(s)
      Koichi Takase
    • Journal Title

      Cornel University Library

      Volume: -

    • Related Report
      2017 Research-status Report
  • [Journal Article] Regular irreducible characters of a hyperspecial compact group2017

    • Author(s)
      Koichi Takase
    • Journal Title

      Cornel University Library

      Volume: -

    • Related Report
      2016 Research-status Report
  • [Journal Article] 分割数とは2017

    • Author(s)
      高瀬 幸一
    • Journal Title

      数学セミナー

      Volume: 56 Pages: 8-13

    • Related Report
      2016 Research-status Report
  • [Presentation] On supercuspidal representations of Sp(2n) and Langlands parameters2021

    • Author(s)
      Koichi Takase
    • Organizer
      RIMS共同研究「保形形式,保形表現,ガロア表現とその周辺」
    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Int'l Joint Research
  • [Book] ラマヌジャン:その生涯と業績に想起された主題による十二の講義2016

    • Author(s)
      G.H.Hardy (高瀬幸一訳)
    • Total Pages
      384
    • Publisher
      丸善出版
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi