Project/Area Number |
16K05055
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Rikkyo University (2017-2019) The University of Tokyo (2016) |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 量子包絡代数 / 量子包絡環 / 結晶基底 / 量子群 |
Outline of Final Research Achievements |
In resent study of mathematical physics (string theory, especially), it is known that toroidal Lie algebras (LTA), and quantum toroidal algebras (QTA) play important roles. In this reseach project, we investigate the structure of these algebras in uniform way, by using the theory of elliptic root systems. Especially, we prove that these algebras have an elliptic modular group action induced from one on elliptic root systems. We believe these properties are quite important in the future study of these algebras.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の対象となるTLA及びQTAは,近年弦理論を始めとして様々な分野で注目を浴びている代数系であるが,既存の手法が殆ど役に立たないとの理由から組織的な研究は殆ど行われて来なかった.本研究では楕円ルート系の理論を用いてこの代数系を調べ,楕円モジュラー群がTLA, QTAに作用することを示した.これは,既存のルート系の理論,リー代数,量子包絡代数には無かった全く新しい性質であり,今後の当該代数の研究に重要な役割を果たすことが期待される.
|