• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Resarch on simple groups with algebraic structures on which a finite simple group acts

Research Project

Project/Area Number 16K05066
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKumamoto University

Principal Investigator

Chigira Naoki  熊本大学, 大学院先端科学研究部(理), 准教授 (40292073)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords単純群 / 符号 / 格子 / 代数構造 / 有限単純群 / 可換代数 / 代数学
Outline of Final Research Achievements

We consider codes, lattices, commutative non-associative algebras with associative inner product on which some finite groups, especially some sporadic simple groups, acts. In particular, we construct self-dual codes invariant under the Rudvalis simple group, which is one of the sporadic simple groups. Also we study the properties of the Rudvalis group.Also we study a commutative non-associative algebra with associative inner product for J_2, M_{12}, 3S_7 and 2^6:3S_6.

Academic Significance and Societal Importance of the Research Achievements

散在型有限単純群をより理解するためには符号、格子、可換非結合代数などの代数的構造で群の構造を反映するものをうまく構成することが重要である。2元体上の自己双対符号と散在型有限単純群の作用に関してラドヴァリス群は特徴的であり意義がある。また可換非結合代数の存在はいくつかの群について知られていたが、実際に積構造を構成することで群構造を詳しく知られる手掛かりの1つが得られたことになる。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results) (of which Invited: 4 results)

  • [Journal Article] Self-dual codes related to the Rudvalis group2018

    • Author(s)
      Naoki Chigira, Masaaki Kitazume
    • Journal Title

      Graphs and Combinatorics

      Volume: 34 Issue: 4 Pages: 769-775

    • DOI

      10.1007/s00373-018-1912-x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 45次元可換非結合代数について2019

    • Author(s)
      千吉良直紀
    • Organizer
      第31回有限群論草津セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] An integer matrix for a finite group2019

    • Author(s)
      千吉良直紀
    • Organizer
      代数的組合せ論と関連する群と代数の研究
    • Related Report
      2019 Annual Research Report
  • [Presentation] A commutative nonassociative algebra for 3S72017

    • Author(s)
      千吉良直紀
    • Organizer
      第34回代数的組合せ論シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 3S_7とhexacode2017

    • Author(s)
      千吉良直紀
    • Organizer
      第29回有限群論草津セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 単純群と格子2016

    • Author(s)
      千吉良直紀
    • Organizer
      第28回有限群論草津セミナー
    • Place of Presentation
      草津セミナーハウス
    • Year and Date
      2016-07-28
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi