Special values of automorphic L-functions
Project/Area Number |
16K05069
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Osaka City University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 保型L函数 / L函数の特殊値 / テータ対応 / 代数学 |
Outline of Final Research Achievements |
In a joint work with Kazuki Morimoto of Kobe University, we proved Boecherer's conjecture. It is a conjecture concerning degree two cuspidal Siegel modular forms which are Hecke eigenforms. More precisely, it predicted a relationship between the finite sum of Fourier coefficients over the binary quadratic forms corresponding to the ideal class group of an imaginary quadratic field and the central special value of the spinor L-function twisted by the quadratic character corresponding to the imaginary quadratic field. Siegfried Boecherer proclaimed the conjecture in the 1980's and it has been open till now.
|
Academic Significance and Societal Importance of the Research Achievements |
算術的なL函数の特殊値は、対応する数論的対象物の重要な情報を含んでいると予想されている。Birch & Swinnerton-Dyer予想及びその一般化にみられるように、函数等式の中心における特殊値は特に興味深い。本研究の成果であるベッヘラー予想は、GL(2)に関するWaldspurgerの定理の自然な一般化であるとみなすことができる。Waldspurgerの結果はこれまでに、楕円曲線及びGL(2)の保型形式の数論において、重要な局面で応用されてきた。我々の結果に対しても、今後、様々な応用が期待できる。
|
Report
(5 results)
Research Products
(5 results)